[论文笔记-1]Aspect-based Sentiment Analysis as Machine Reading Comprehension

题目、作者

一、Abstract

1. 现有的研究通常通过堆叠多个神经模块来处理基于方面的情感分析,这不可避免地导致严重的错误传播

2. 本文提出了MRCOOL: MRC-PrOmpt mOdeL框架

二、Introduction

1. 方面词提取(Aspect term extraction)和方面层次情感分类(aspect-level sentiment classification)是ABSA的两个子任务;(结合前面两个任务)方面术语提取和情感分类(aspect term extraction and sentiment  classification)建立了第三个基本子任务。

example:

2. 通常,MRC模型可以根据给定的段落对问题给出正确的答案

3. 现存的主流研究方法:

① 先提取方面术语,然后用其他作者的方法进行情感分类,来实现AESC

② 通过联合或交互的方式实现方面词的提取和对应情感极性的识别

4. 提示学习是利用预训练语言模型知识的自然方式,其要求将下游任务调整为相应的预训练语言模型的自监督学习任务【关于提示学习详见尾部附录】

5. 阅读理解和提示学习明显的缺点:

① 耗费人力,且不能保证找到最匹配的查询答案。

② 不能充分利用预训练语言模型的知识

6. 由于上述缺点,本文提出一个端到端的MRCOOL框架,可以一次性处理AE、SC和AESC:

AE→阅读理解;SC→提示学习

三、MRCOOL Framework

MRCOOL总览:

 3.1 Task Formulation

把AE、SC 、AESC三个ABSA子任务看做一个抽取(aspect, polarity)元组的任务。

我们将AE作为阅读理解任务,把输入的句子X看做段落,把方面词A看做对模型提问的答案 

由于AE数据集不包含阅读理解的问题Q(与MRC模型不兼容),所以我们构造了一个专用的问题集合Q。问题集合Q在训练过程中可以优化其embedding,并在连续空间中为每个句子x搜索最优的最佳匹配问题

3.2 Aspect Term Extraction as Machine Reading Comprehension

先看图!

如图所示,得到S后,接下来是方面词的提取(AE),我们采用两个独立的二元分类器来预测一个token是一个方面的开始位置还是结束位置,得到所有方面词的开始和结束位置以后,他们中间的便是aspect。

3.3 Aspect-level Sentiment Classification as Prompt Learning

这部分如果您详细了解过提示学习,就会觉得非常清楚!

 在这部分中,我们将普通的情感分类问题,转化为将提示语句Q中[mask]处预测为预先指定的单词w(即从预先定义的答案空间中选取答案进行完形填空)的问题。

第一步:我们挑选了4个提示模板:

第二步:拿到一个句子X和其中的一个方面词,分别将句子填到[CLS]与[SEP]中间,将方面词填到第一步模板中ai的位置(填充前是Ti,填充后是Qi),最终得到的形式(作为预训练语言模型embedding之前的input)。

如果感觉太抽象,看下图便一目了然!

输入之后,embedding、encode,通过一个双层的MLP(防止模型稀疏)预测,得到预先定义好的答案空间中的答案(即对[mask]位置的预测,进行完形填空,如I felt the waiters was friendly)

最后,通过argmax函数,将预测[mask]位置得到的预先指定的单词w映射到真正的标签中(如I felt the waiters was friendlypositive),得到最终(ai对应)的情感极性

【注】Verlalizer的作用:将预测[mask]得到的答案(通过算法)映射到真实标签

 模型流程总结:

当给定一个句子X时,我们的框架首先将它输入到MRC模型中,并接收候选方面词集合A,然后枚举A中的每个方面词ai构造四个与之对应的X的模板,提示学习模块接收它们并输出极性P,从而得到三元组——(句子、方面、情感极性)作为AESC的结果。

 四、实验

附录:

提示学习(prompt Learning)

对输入的文本信息按照特定模板(template)进行处理,把任务重构成一个更能够充分利用预训练语言模型处理的形式。简而言之,就是将输入文本作为一个提示 (prompt),接着拼一个(mask待预测信息的)语句,再让模型来对这个语句的mask部分进行完形填空(从答案空间中寻找答案),最后把找到的答案映射到真实的分类标签(如:good→positive)。【如果用一句话总结提示学习在情感分析中的应用,就是将待分类的text与提示模板(prompt templates)一起喂给模型,让模型完成完形填空的工作】

如果想更深入的学习提示学习,传送门如下:

[综述]鹏飞大神的Pre-train, Prompt, and Predict 

近代自然语言处理技术发展的“第四范式”

刘鹏飞大神原版论文:Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

参考文章:近代自然语言处理技术发展的“第四范式

本篇文献链接:https://aclanthology.org/2022.coling-1.217.pdf

【声明】由于本人能力有限,不免文中有错误之处,还请指正。

Bert是一种在自然语言处理中被广泛使用的模型,其在各种任务中表现出了出色的性能。然而,对于方面级情感分析,Bert并不直接适用。因此,需要对Bert进行利用,并通过修改和扩展来适应这一任务。 端到端(end-to-end)的方面级情感分析是指通过一个模型直接从文本中提取方面和情感信息。为了利用Bert进行端到端的方面级情感分析,首先需要对数据进行预处理,并将其转换成Bert模型所接受的输入格式。这包括将文本分段、添加特殊标记以及填充序列等操作。 在Bert模型的基础上,需要添加相关的层来实现方面级情感分析。一种常见的方法是利用注意力机制来捕获方面词与其他词之间的关系。通过计算不同词之间的注意力权重,可以将方面词的相关信息传递给其他词,从而更好地理解整个文本。另外,也可以添加一些分类层来预测每个方面的情感。 为了更好地利用Bert,还可以使用领域特定的语料库来进行预训练。通过在大规模的语料库上进行预训练,模型可以更好地理解特定领域的文本,并提升方面级情感分析的性能。 此外,还可以通过调整Bert模型的超参数来进一步改善性能。例如,可以调整学习率、批大小和训练周期等超参数,以获得更好的结果。 总之,“exploiting bert for end-to-end aspect-based sentiment analysis”意味着通过对Bert进行修改和扩展,将其应用于端到端的方面级情感分析任务中,以提升模型的性能和效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值