测试实现三(任意两个节点之间路径的最大长度)

前提须知:

Node类以及其他内容

实现代码(转载):

原版在以上链接的片末。

package com.bjsxt.test;
/**
 * 二叉树任意两个节点的最大距离
 */
public class MaxDistOfBiTree {
	public int lm=0,rm=0,max=0;
	
	public int getMax() {
		return max;
	}
	public int maxDist(Node root) { 
		//如果树是空的,则返回0  
		if(root == null) 
			return 0; 
		if(root.left != null) { 
			lm = maxDist(root.left)+1; 
		} 
		if(root.right != null) 
		rm = maxDist(root.right); 
		//如果以该节点为根的子树中有最大的距离,那就更新最大距离  
		int sum = rm + lm; 
		if(sum > max) { 
			max = sum; 
		} 
		return rm > lm ?rm : lm; 	
	}  
}

测试代码块:

package com.bjsxt.test;

import java.util.Iterator;
import java.util.List;

/**
 * 以int类型为节点值,进行关于二叉树相关算法设计的测试
 */
public class Test {
	
	public static void main(String[] args) {
		//测试--打印二叉树每层的节点
		BiTreeTraversing tree = new BiTreeTraversing();
		tree.getResult();
		
		Node root=tree.getPack().get(0);//整棵树的根节点
		
		//测试--二叉树任意两个节点之间路径的最大长度
		MaxDistOfBiTree Dist= new MaxDistOfBiTree();
		Dist.maxDist(root);
		System.out.println("最大长度:"+Dist.getMax());
	}
	
}

测试结果:

最大长度:  6
在C语言中,要计算二叉树任意两个指定节点之间路径,你可以使用递归的方式遍历整个二叉树,并跟踪每个节点的访问路径。首先,你需要定义一个结构体表示二叉树节点,包括一个值、指向左子节点和右子节点的指针。然后可以创建一个辅助函数来记录路径。 以下是一个简单的示例: ```c #include <stdio.h> #include <stdlib.h> // 定义二叉树节点结构 typedef struct TreeNode { int val; struct TreeNode* left; struct TreeNode* right; } TreeNode; // 辅助函数,用于存储路径 void storePath(int path[], int index, TreeNode* node, char* result) { if (node == NULL) return; path[index++] = node->val; if (node->left == NULL && node->right == NULL) { // 如果是最小子节点,添加到结果并结束递归 sprintf(result + strlen(result), "%d", path[index - 1]); printf("%s\n", result); return; } storePath(path, index, node->left, result); storePath(path, index, node->right, result); } // 主函数,输入起始节点和目标节点,找到它们之间路径 char* findPath(TreeNode* root, TreeNode* startNode, TreeNode* targetNode) { int path[100]; // 假设路径长度不超过100 int pathLength = 0; if (root == startNode || root == targetNode) { if (root == startNode) { storePath(path, pathLength, targetNode, " -> "); return result; // 直接返回从startNode到targetNode的路径 } else if (root == targetNode) { storePath(path, pathLength, startNode, " -> "); // 同理,交换起点和终点 return result; } } // 递归查找路径 storePath(path, pathLength, root, ""); for (int i = 0; i <= pathLength; i++) { if (path[i] == startNode->val) { storePath(path, i, targetNode, result); // 从找到startNode开始继续找targetNode break; } } return result; } int main() { // 填充你的二叉树实例... // 示例:TreeNode *root = createYourTree(); // 使用findPath(root, startNode, targetNode)寻找路径 return 0; } ``` 这个示例假设你已经有了一个`createYourTree()`函数来构造二叉树。请注意,实际应用中你需要处理内存分配和释放,以及错误检查。在主函数中,你需要传入具体的二叉树起始节点和目标节点作为参数调用`findPath`函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值