二叉树的任意两节点间的最大距离

本文介绍了如何求解二叉树中任意两节点的最大距离问题。通过将二叉树视为图,定义节点间的距离为边的数量。解法包括考虑经过左子树最深节点、根节点再到右子树最深节点的路径,或者不经过根节点的左右子树最大距离路径中的最大值。
摘要由CSDN通过智能技术生成
1.问题定义

如果我们把二叉树看成一个图,父子结点之间的连线看成是双向的,我们姑且定义“距离”为两节点之间边的个数。

写一个程序求一棵二叉树中相距最远的两个结点之间的距离


2.解法

计算一个二叉树的最大距离无外乎两种情况:

A. 路径经过左子树的最深结点,再通过根节点,最后到右子树的最深结点。

B. 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其最大者。


struct Node{
	Node* left;//左子树
	Node* right;//右子树
	int	  maxleft;//左子树中的最长距离
	int   maxright;//右子树的最长距离
	char  val;//该结点的值
};
int nMaxLen = 0;
void FindMaxLen(Node* root){//寻找树中最长的两段距离
	if (root == NULL)
		return;//遍历到叶子节点,返回
	//如果左子树为空,那么该节点的左边最长距离为0
	if (root->left == NULL){
		root->maxleft = 0;
	}
	if (root->right == NULL){
		root->maxright = 0;
	}
	if (root->left != NUL
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值