eCognition使用ESP插件得到最优分割尺度

eCognition 面向对象的多尺度分割

使用ESP插件进行多尺度分割。

下载ESP插件

链接:https://pan.baidu.com/s/1QnDASk1p5GCYNCoEXB0vSg
提取码:i102

ESP插件压缩包里面包括
(1) ZedGraph.dll
(2)ESP_estimation_scale_parameter.dcp
(3)ESP_Estimation_Scale_Parameter_Chart.exe
在这里插入图片描述
将ZedGraph.dll拓展文件放到eCognition Developer 64安装目录下的 bin\plugins文件夹下
在这里插入图片描述

step1. 打开eCognition软件,创建工作空间导入影像。

step2. 加载和运行工具。

在这里插入图片描述
在工具栏【process】-【load rule set】加载规则集/自定义算法
“ESP2_Estimation_Scale_Parameter_2.dcp”(在解压文件夹中ESP存储在计算机上的路径&

### eCognition尺度分割最优参数设置及选择标准 在eCognition中进行多尺度分割时,选择最佳分割尺度是一个复杂的过程,涉及多个因素的综合考虑。为了实现这一目标,通常采用一种迭代优化的方法来调整形状因子(shape)、紧致度因子(compactness),以及最终的核心最优尺度(Scale)[^1]。 #### 形状因子与紧致度因子的影响 形状因子和紧致度因子决定了对象边界平滑程度及其几何特性。这两个参数值越低,则意味着更倾向于保持原始图像特征而不做过多简化处理;反之则会使结果更加规整化。实际应用过程中需依据待分析的具体影像特点灵活设定这些数值[^2]。 #### 使用ESP插件辅助决策 通过ESP(Evaluation of Scale Parameter)插件可以帮助快速定位到可能存在的理想分割尺度范围。该方法利用了局部变异系数(Local Variance, LV)随尺度变化的趋势图谱来进行评估: - **加载数据**:启动软件并导入所需处理的数据集; - **执行计算**:调用内置算法自动完成不同层次下的分割尝试,并记录每次试验产生的LV指标; - **解析图表**:观察所得曲线形态,特别是那些显著上升或下降转折点处所对应的比例尺大小,它们往往指示着潜在的最佳候选方案之一[^4]。 #### 实际操作流程概述 当准备就绪之后,按照以下方式开展工作将会有所帮助: ```python # 假设已安装好相应环境并配置完毕 from ecognition import ProjectManager, EspTool project_manager = ProjectManager() esp_tool = EspTool() def find_optimal_scale(image_path): project_manager.create_new_project() # 创建新项目 esp_tool.load_image(image_path=image_path) lv_curve_data = esp_tool.calculate_lv_changes() optimal_scales = identify_peaks(lv_curve_data) return optimal_scales optimal_scales = find_optimal_scale('path_to_your_image') print(f'Optimal scales found at {", ".join(map(str,optimal_scales))}') ``` 此脚本展示了如何自动化上述提到的部分步骤,当然具体实施细节还需参照官方文档进一步完善。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值