Part I. S3. 区间直觉模糊集理论


3.1 区间直觉模糊集的概念

定义1.14
  设X是一个非空经典集合, I [ 0 , 1 ] I_{[0,1]} I[0,1]表示 [ 0 , 1 ] [0,1] [0,1]区间上的所有闭子区间的集合,则称
A ~ = { ⟨ x , μ A ~ ( x ) , ν A ~ ( x ) ⟩ ∣ x ∈ X } (3.1) \color{red} { \tilde{A}=\left\{\left\langle x,\mu_{\tilde{A}}(x),\nu_{\tilde{A}}(x)\right\rangle|x \in X\right\} \tag{3.1} } A~={x,μA~(x),νA~(x)xX}(3.1)
X上的一个区间直觉模糊集,其中 μ A ~ \mu_{\tilde{A}} μA~ ν A ~ \nu_{\tilde{A}} νA~分别为 A ~ \tilde{A} A~的区间值隶属度函数和区间值非隶属度函数, μ A ~ ( x ) \mu_{\tilde{A}}(x) μA~(x) ν A ~ ( x ) \nu_{\tilde{A}}(x) νA~(x)分别为元素x属于 A ~ \tilde{A} A~的区间值隶属度和区间值非隶属度,即
μ A ~ : X → I [ 0 , 1 ] , x ∈ X → μ A ~ ( x ) ∧ [ 0 , 1 ] \mu_{\tilde{A}}:X \rightarrow I_{[0,1]},x \in X \rightarrow \mu_{\tilde{A}}(x)\wedge[0,1] μA~:XI[0,1],xXμA~(x)[0,1]
ν A ~ : X → I [ 0 , 1 ] , x ∈ X → ν A ~ ( x ) ∧ [ 0 , 1 ] \nu_{\tilde{A}}:X \rightarrow I_{[0,1]},x \in X \rightarrow \nu_{\tilde{A}}(x)\wedge[0,1] νA~:XI[0,1],xXνA~(x)[0,1]
且满足条件
0 ≤ s u p { μ A ~ ( x ) } + s u p { ν A ~ ( x ) } ≤ 1 , x ∈ X 0 \leq sup\{ \mu_{\tilde{A}}(x) \} + sup\{ \nu_{\tilde{A}}(x) \} \leq 1, x \in X 0sup{μA~(x)}+sup{νA~(x)}1,xX
X上所有区间直觉模糊集的集合记为 F I ( X ) F_{I}(X) FI(X)
为方便起见,将区间值隶属度 μ A ~ ( x ) \mu_{\tilde{A}}(x) μA~(x)和区间值非隶属度 ν A ~ \nu_{\tilde{A}} νA~的上、下断点分别记为 μ A ~ U ( x ) \mu_{\tilde{A}U}(x) μA~U(x) μ A ~ L ( x ) \mu_{\tilde{A}L}(x) μA~L(x) ν A ~ U ( x ) \nu_{\tilde{A}U}(x) νA~U(x) ν A ~ L ( x ) \nu_{\tilde{A}L}(x) νA~L(x)。由此,区间直觉模糊集 A ~ \tilde{A} A~可用区间值形式表示为
A ~ = { ⟨ x , [ μ A ~ L ( x ) , μ A ~ U ( x ) ] , [ ν A ~ L ( x ) , ν A ~ U ( x ) ] ⟩ ∣ x ∈ X } (3.2) \color{red} { \tilde{A} = \left \{ \left\langle x, [\mu_{\tilde{A}L}(x),\mu_{\tilde{A}U}(x)], [\nu_{\tilde{A}L}(x), \nu_{\tilde{A}U}(x)]\right\rangle | x \in X \right \} \tag{3.2} } A~={x,[μA~L(x),μA~U(x)],[νA~L(x),νA~U(x)]xX}(3.2)
式中, [ μ A ~ L ( x ) ∈ [ 0 , 1 ] [\mu_{\tilde{A}L}(x) \in [0,1] [μA~L(x)[0,1] μ A ~ U ( x ) ∈ [ 0 , 1 ] \mu_{\tilde{A}U}(x) \in [0,1] μA~U(x)[0,1] ν A ~ L ( x ) ∈ [ 0 , 1 ] \nu_{\tilde{A}L}(x) \in [0,1] νA~L(x)[0,1] ν A ~ U ( x ) ∈ [ 0 , 1 ] \nu_{\tilde{A}U}(x) \in [0,1] νA~U(x)[0,1] μ A ~ U ( x ) + ν A ~ U ( x ) ≤ 1 \mu_{\tilde{A}U}(x) + \nu_{\tilde{A}U}(x) \leq 1 μA~U(x)+νA~U(x)1

  令
π A ~ ( x ) = 1 − μ A ~ ( x ) − ν A ~ ( x ) = [ 1 − μ A ~ U ( x ) − ν A ~ U ( x ) , 1 − μ A ~ L ( x ) − ν A ~ L ( x ) ] \pi_{\tilde{A}}(x)=1-\mu_{\tilde{A}}(x)-\nu_{\tilde{A}}(x)=\left[1-\mu_{\tilde{A}U}(x)-\nu_{\tilde{A}U}(x), 1-\mu_{\tilde{A}L}(x)-\nu_{\tilde{A} L}(x)\right] πA~(x)=1μA~(x)νA~(x)=[1μA~U(x)νA~U(x),1μA~L(x)νA~L(x)]
称为 π A ~ ( x ) \pi_{\tilde{A}}(x) πA~(x)为元素x属于区间直觉模糊集 A ~ \tilde{A} A~区间直觉犹豫度(或区间直觉模糊指标)。
  显然,当 μ A ~ L ( x ) = μ A ~ U ( x ) \mu_{\tilde{A} L}(x) = \mu_{\tilde{A} U}(x) μA~L(x)=μA~U(x) ν A ~ L ( x ) = ν A ~ U ( x ) \nu_{\tilde{A} L}(x) = \nu_{\tilde{A} U}(x) νA~L(x)=νA~U(x)时,区间直觉模糊集 A ~ \tilde{A} A~退化为直觉模糊集。因此,区间直觉模糊集市直觉模糊集的推广。


3.2 区间直觉模糊集基本运算法则

定义1.15
  设 A ~ = { ⟨ x , [ μ A ~ L ( x ) , μ t i l d e A U ( x ) ] , [ ν A ~ L ( x ) , ν A ~ U ( x ) ] ⟩ ∣ x ∈ X } \tilde{A} = \left \{ \left \langle x,\left [\mu_{\tilde{A} L}(x), \mu_{tilde{A} U}(x) \right ],\left [ \nu_{\tilde{A} L}(x), \nu_{\tilde{A} U}(x)\right]\right \rangle \mid x \in X\right\} A~={x,[μA~L(x),μtildeAU(x)],[νA~L(x),νA~U(x)]xX} B ~ = { ⟨ x , [ μ B ~ L ( x ) , μ t i l d e B U ( x ) ] , [ ν B ~ L ( x ) , ν B ~ U ( x ) ] ⟩ ∣ x ∈ X } \tilde{B} = \left \{ \left \langle x,\left [\mu_{\tilde{B} L}(x), \mu_{tilde{B} U}(x) \right ],\left [ \nu_{\tilde{B} L}(x), \nu_{\tilde{B} U}(x)\right]\right \rangle \mid x \in X\right\} B~={x,[μB~L(x),μtildeBU(x)],[νB~L(x),νB~U(x)]xX}是论域X上的两个区间直觉模糊集, λ > 0 \lambda \gt 0 λ>0是任意实数,则

  (1) 区间直觉模糊集的包含关系: A ~ ⊆ B ~ \tilde{A} \subseteq \tilde{B} A~B~当且仅当 ∀ x ∈ X \forall x \in X xX μ A ~ L ( x ) ≤ μ B ~ L ( x ) \mu_{\tilde{A}L}(x) \leq \mu_{\tilde{B}L}(x) μA~L(x)μB~L(x) μ A ~ U ( x ) ≤ μ B ~ U ( x ) \mu_{\tilde{A}U}(x) \leq \mu_{\tilde{B}U}(x) μA~U(x)μB~U(x) ν A ~ L ( x ) ≥ ν B ~ L ( x ) \nu_{\tilde{A}L}(x) \geq \nu_{\tilde{B}L}(x) νA~L(x)νB~L(x) ν A ~ U ( x ) ≥ ν B ~ U ( x ) \nu_{\tilde{A}U}(x) \geq \nu_{\tilde{B}U}(x) νA~U(x)νB~U(x)

  (2) 区间直觉模糊集的相等关系: A ~ = B ~ \tilde{A} = \tilde{B} A~=B~当且仅当 ∀ x ∈ X \forall x \in X xX μ A ~ L ( x ) = μ B ~ L ( x ) \mu_{\tilde{A}L}(x) = \mu_{\tilde{B}L}(x) μA~L(x)=μB~L(x) μ A ~ U ( x ) = μ B ~ U ( x ) \mu_{\tilde{A}U}(x) = \mu_{\tilde{B}U}(x) μA~U(x)=μB~U(x) ν A ~ L ( x ) = ν B ~ L ( x ) \nu_{\tilde{A}L}(x) = \nu_{\tilde{B}L}(x) νA~L(x)=νB~L(x) ν A ~ U ( x ) = ν B ~ U ( x ) \nu_{\tilde{A}U}(x) = \nu_{\tilde{B}U}(x) νA~U(x)=νB~U(x)

  (3) 区间直觉模糊集的补:
( A ~ ) c = { ⟨ x , [ ν A ~ L ( x ) , ν A ~ U ( x ) ] , [ μ A ~ L ( x ) , μ A ~ U ( x ) ] ⟩ ∣ x ∈ X } (\tilde{A})^{c}=\left \{ \left \langle x,\left [ \nu_{\tilde{A} L}(x), \nu_{\tilde{A} U}(x) \right],\left[\mu_{\tilde{A} L}(x), \mu_{\tilde{A} U}(x)]\right\rangle\right| x \in X\right\} (A~)c={x,[νA~L(x),νA~U(x)],[μA~L(x),μA~U(x)]xX}

  (4) 区间直觉模糊集的交:
A ~ ∩ B ~ = { ⟨ x , [ μ A ~ L ( x ) ∧ μ B ~ L ( x ) , μ A ~ U ( x ) ∧ μ B ~ U ( x ) ] , [ ν A ~ L ( x ) ∨ ν B ~ L ( x ) , ν A ~ U ( x ) ∨ ν B ~ U ( x ) ] ⟩ ∣ x ∈ X } \tilde{A} \cap \tilde{B} = \left \{ \left \langle x, [\mu_{\tilde{A}L}(x) \wedge \mu_{\tilde{B}L}(x), \mu_{\tilde{A}U}(x) \wedge \mu_{\tilde{B}U}(x)], [\nu_{\tilde{A}L}(x) \vee \nu_{\tilde{B}L}(x), \nu_{\tilde{A}U}(x) \vee \nu_{\tilde{B}U}(x)] \right \rangle |x \in X\right \} A~B~={x,[μA~L(x)μB~L(x),μA~U(x)μB~U(x)],[νA~L(x)νB~L(x),νA~U(x)νB~U(x)]xX}

  (5) 区间直觉模糊集的并:
A ~ ∪ B ~ = { ⟨ x , [ μ A ~ L ( x ) ∨ μ B ~ L ( x ) , μ A ~ U ( x ) ∨ μ B ~ U ( x ) ] , [ ν A ~ L ( x ) ∧ ν B ~ L ( x ) , ν A ~ U ( x ) ∧ ν B ~ U ( x ) ] ⟩ ∣ x ∈ X } \tilde{A} \cup \tilde{B} = \left \{ \left \langle x, [\mu_{\tilde{A}L}(x) \vee \mu_{\tilde{B}L}(x), \mu_{\tilde{A}U}(x) \vee \mu_{\tilde{B}U}(x)], [\nu_{\tilde{A}L}(x) \wedge \nu_{\tilde{B}L}(x), \nu_{\tilde{A}U}(x) \wedge \nu_{\tilde{B}U}(x)] \right \rangle |x \in X\right \} A~B~={x,[μA~L(x)μB~L(x),μA~U(x)μB~U(x)],[νA~L(x)νB~L(x),νA~U(x)νB~U(x)]xX}

  (6) 区间直觉模糊集的和:
A ~ + B ~ = { ⟨ x , [ μ A ~ L ( x ) + μ B ~ L ( x ) − μ A ~ L ( x ) μ B ~ L ( x ) , μ A ~ U ( x ) + μ B ~ U ( x ) − μ A ~ U ( x ) μ B ~ U ( x ) ] , [ ν A ~ L ( x ) ν B ~ L ( x ) , ν A ~ U ( x ) ν B ~ U ( x ) ] ⟩ ∣ x ∈ X } \tilde{A} + \tilde{B} = \left \{ \left \langle x, [\mu_{\tilde{A}L}(x) + \mu_{\tilde{B}L}(x) - \mu_{\tilde{A}L}(x) \mu_{\tilde{B}L}(x), \mu_{\tilde{A}U}(x) + \mu_{\tilde{B}U}(x) - \mu_{\tilde{A}U}(x) \mu_{\tilde{B}U}(x)], [\nu_{\tilde{A}L}(x) \nu_{\tilde{B}L}(x), \nu_{\tilde{A}U}(x) \nu_{\tilde{B}U}(x)] \right \rangle |x \in X\right \} A~+B~={x,[μA~L(x)+μB~L(x)μA~L(x)μB~L(x),μA~U(x)+μB~U(x)μA~U(x)μB~U(x)],[νA~L(x)νB~L(x),νA~U(x)νB~U(x)]xX}

  (7) 区间直觉模糊集的积:
A ~ ⋅ B ~ = { ⟨ x , [ μ A ~ L ( x ) μ B ~ L ( x ) , μ A ~ U ( x ) μ B ~ U ( x ) ] , [ ν A ~ L ( x ) + ν B ~ L ( x ) − ν A ~ L ( x ) ν B ~ L ( x ) , ν A ~ U ( x ) + ν B ~ U ( x ) − ν A ~ U ( x ) ν B ~ U ( x ) ] ⟩ ∣ x ∈ X } \tilde{A} \centerdot \tilde{B} = \left \{ \left \langle x, [\mu_{\tilde{A}L}(x) \mu_{\tilde{B}L}(x), \mu_{\tilde{A}U}(x) \mu_{\tilde{B}U}(x)], [\nu_{\tilde{A}L}(x) + \nu_{\tilde{B}L}(x) - \nu_{\tilde{A}L}(x) \nu_{\tilde{B}L}(x), \nu_{\tilde{A}U}(x) + \nu_{\tilde{B}U}(x) - \nu_{\tilde{A}U}(x) \nu_{\tilde{B}U}(x)] \right \rangle |x \in X\right \} A~B~={x,[μA~L(x)μB~L(x),μA~U(x)μB~U(x)],[νA~L(x)+νB~L(x)νA~L(x)νB~L(x),νA~U(x)+νB~U(x)νA~U(x)νB~U(x)]xX}

  (8) 区间直觉模糊集的乘积:
λ A ~ = { ⟨ x , [ 1 − ( 1 − μ A ~ L ( x ) ) λ , 1 − ( 1 − μ A ~ U ( x ) ) λ ] , [ ( ν A ~ L ( x ) ) λ , ( ν A ~ U ( x ) ) λ ] ∣ x ∈ X ⟩ } \lambda \tilde{A} = \left \{ \left \langle x, \left[ 1- {(1-\mu_{\tilde{A}L}(x))}^{\lambda},1- {(1-\mu_{\tilde{A}U}(x))}^{\lambda} \right], \left[ {(\nu_{\tilde{A}L}(x))}^{\lambda}, {(\nu_{\tilde{A}U}(x))}^{\lambda}\right]| x \in X \right \rangle \right \} λA~={x,[1(1μA~L(x))λ,1(1μA~U(x))λ],[(νA~L(x))λ,(νA~U(x))λ]xX}

  (9) 区间直觉模糊集的乘方:
( A ~ ) λ = { ⟨ x , [ ( μ A ~ L ( x ) ) λ , ( μ A ~ U ( x ) ) λ ] , [ 1 − ( 1 − ν A ~ L ( x ) ) λ , 1 − ( 1 − ν A ~ U ( x ) ) λ ] ∣ x ∈ X ⟩ } {(\tilde{A})}^{\lambda} = \left \{ \left \langle x, \left[ {(\mu_{\tilde{A}L}(x))}^{\lambda}, {(\mu_{\tilde{A}U}(x))}^{\lambda}\right], \left[ 1- {(1-\nu_{\tilde{A}L}(x))}^{\lambda},1- {(1-\nu_{\tilde{A}U}(x))}^{\lambda} \right]| x \in X \right \rangle \right \} (A~)λ={x,[(μA~L(x))λ,(μA~U(x))λ],[1(1νA~L(x))λ,1(1νA~U(x))λ]xX}


3.3 区间直觉模糊集的相似度与距离

  设 F I ( X ) F_{I}(X) FI(X)表示所有区间直觉模糊集的集合,则区间直觉模糊集的相似度如下:

定义1.16
  设 s : F I ( X ) × F I ( X ) → [ 0 , 1 ] s: F_{I}(X) \times F_{I}(X) \rightarrow[0,1] s:FI(X)×FI(X)[0,1]是一映射,对于任意取件直觉模糊集 A ~ ∈ F I ( X ) 、 B ~ ∈ F I ( X ) 、 C ~ ∈ F I ( X ) \tilde{A} \in F_{I}(X)、 \tilde{B} \in F_{I}(X)、 \tilde{C} \in F_{I}(X) A~FI(X)B~FI(X)C~FI(X),称 s ( A ~ , B ~ ) s\left( \tilde{A}, \tilde{B}\right) s(A~,B~)为区间直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的相似度,如果它满足以下条件:
  (1)  0 ≤ s ( A ~ , B ~ ) ≤ 1 0 \leq s\left( \tilde{A}, \tilde{B}\right) \leq 1 0s(A~,B~)1
  (2)  s ( A ~ , B ~ ) = 1 s\left( \tilde{A}, \tilde{B}\right) = 1 s(A~,B~)=1当且仅当 A ~ = B ~ \tilde{A} = \tilde{B} A~=B~
  (3)  s ( A ~ , B ~ ) = s ( B ~ , A ~ ) s\left( \tilde{A}, \tilde{B}\right) = s\left( \tilde{B}, \tilde{A}\right) s(A~,B~)=s(B~,A~)
  (4) 如果 A ~ ⊆ B ~ ⊆ C ~ \tilde{A} \subseteq \tilde{B} \subseteq \tilde{C} A~B~C~,则 s ( A ~ , C ~ ) ≤ s ( A ~ , B ~ ) s\left( \tilde{A}, \tilde{C}\right) \leq s\left( \tilde{A}, \tilde{B}\right) s(A~,C~)s(A~,B~) s ( A ~ , C ~ ) ≤ s ( B ~ , C ~ ) s\left( \tilde{A}, \tilde{C}\right) \leq s\left( \tilde{B}, \tilde{C}\right) s(A~,C~)s(B~,C~)

定义1.17
  设 d : F I ( X ) × F I ( X ) → [ 0 , 1 ] d: F_{I}(X) \times F_{I}(X) \rightarrow[0,1] d:FI(X)×FI(X)[0,1]是一映射,对于任意取件直觉模糊集 A ~ ∈ F I ( X ) 、 B ~ ∈ F I ( X ) 、 C ~ ∈ F I ( X ) \tilde{A} \in F_{I}(X)、 \tilde{B} \in F_{I}(X)、 \tilde{C} \in F_{I}(X) A~FI(X)B~FI(X)C~FI(X),称 d ( A ~ , B ~ ) d\left( \tilde{A}, \tilde{B}\right) d(A~,B~)为区间直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的距离,如果它满足以下条件:

  (1)  0 ≤ d ( A ~ , B ~ ) ≤ 1 0 \leq d\left( \tilde{A}, \tilde{B}\right) \leq 1 0d(A~,B~)1
  (2)  d ( A ~ , B ~ ) = 1 d\left( \tilde{A}, \tilde{B}\right) = 1 d(A~,B~)=1当且仅当 A ~ = B ~ \tilde{A} = \tilde{B} A~=B~
  (3)  d ( A ~ , B ~ ) = d ( B ~ , A ~ ) d\left( \tilde{A}, \tilde{B}\right) = d\left( \tilde{B}, \tilde{A}\right) d(A~,B~)=d(B~,A~)
  (4) 如果 A ~ ⊆ B ~ ⊆ C ~ \tilde{A} \subseteq \tilde{B} \subseteq \tilde{C} A~B~C~,则 d ( A ~ , C ~ ) ≥ d ( A ~ , B ~ ) d\left( \tilde{A}, \tilde{C}\right) \geq d\left( \tilde{A}, \tilde{B}\right) d(A~,C~)d(A~,B~) d ( A ~ , C ~ ) ≥ d ( B ~ , C ~ ) d\left( \tilde{A}, \tilde{C}\right) \geq d\left( \tilde{B}, \tilde{C}\right) d(A~,C~)d(B~,C~)
  对于有限论域 X = { x 1 , x 2 , . . . , x n } X=\left \{ x_{1},x_{2},..., x_{n}\right \} X={x1,x2,...,xn}上的两个区间直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~,可以定义以下距离测度:

  闵可夫斯基距离:
d q ( A ~ , B ~ ) = [ 1 4 n ∑ j = 1 n [ ( μ A ~ L ( x j ) − μ B ~ L ( x j ) ) q + ( μ A ~ U ( x j ) − μ B ~ U ( x j ) ) q + ( ν A ~ L ( x j ) − ν B ~ L ( x j ) ) q + ( ν A ~ U ( x j ) − ν B ~ U ( x j ) ) q ] ] 1 / q \begin{aligned} d_{q}(\tilde{A}, \tilde{B})=&\left[\frac{1}{4 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A} L}\left(x_{j}\right)-\mu_{\tilde{B} L}\left(x_{j}\right)\right)^{q}+\left(\mu_{\tilde{A} U}\left(x_{j}\right)-\mu_{\tilde{B} U}\left(x_{j}\right)\right)^{q}\right.\right.\\ &\left.\left.+\left(\nu_{\tilde{A} L}\left(x_{j}\right)-\nu_{\tilde{B} L}\left(x_{j}\right)\right)^{q}+\left(\nu_{\tilde{A} U}\left(x_{j}\right)-\nu_{\tilde{B} U}\left(x_{j}\right)\right)^{q}\right]\right]^{1 / q} \end{aligned} dq(A~,B~)=[4n1j=1n[(μA~L(xj)μB~L(xj))q+(μA~U(xj)μB~U(xj))q+(νA~L(xj)νB~L(xj))q+(νA~U(xj)νB~U(xj))q]]1/q

  汉明距离:
d 1 ( A ~ , B ~ ) = [ 1 4 n ∑ j = 1 n [ ∣ μ A ~ L ( x j ) − μ B ~ L ( x j ) ∣ + ∣ μ A ~ U ( x j ) − μ B ~ U ( x j ) ∣ + ∣ ( ν A ~ L ( x j ) − ν B ~ L ( x j ) ∣ + ∣ ( ν A ~ U ( x j ) − ν B ~ U ( x j ) ∣ ] ] \begin{aligned} d_{1}(\tilde{A}, \tilde{B})=&\left[\frac{1}{4 n} \sum_{j=1}^{n}\left[\left|\mu_{\tilde{A} L}\left(x_{j}\right)-\mu_{\tilde{B} L}\left(x_{j}\right)\right|+\left|\mu_{\tilde{A} U}\left(x_{j}\right)-\mu_{\tilde{B} U}\left(x_{j}\right)\right|+\mid\left(\nu_{\tilde{A} L}\left(x_{j}\right)\right.\right.\right.\\ &\left.-\nu_{\tilde{B} L}\left(x_{j}\right)|+|\left(\nu_{\tilde{A} U}\left(x_{j}\right)-\nu_{\tilde{B} U}\left(x_{j}\right) \mid\right]\right] \end{aligned} d1(A~,B~)=[4n1j=1n[μA~L(xj)μB~L(xj)+μA~U(xj)μB~U(xj)+(νA~L(xj)νB~L(xj)+(νA~U(xj)νB~U(xj)]]

  欧几里得距离:
d 2 ( A ~ , B ~ ) = [ 1 4 n ∑ j = 1 n [ ( μ A ~ L ( x j ) − μ B ~ L ( x j ) ) 2 + ( μ A ~ U ( x j ) − μ B ~ U ( x j ) ) 2 + ( ν A ~ L ( x j ) − ν B ~ L ( x j ) ) 2 + ( ν A ~ U ( x j ) − ν B ~ U ( x j ) ) 2 ] ] 1 / 2 \begin{aligned} d_{2}(\tilde{A}, \tilde{B})=&\left[\frac{1}{4 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A} L}\left(x_{j}\right)-\mu_{\tilde{B} L}\left(x_{j}\right)\right)^{2}+\left(\mu_{\tilde{A} U}\left(x_{j}\right)-\mu_{\tilde{B} U}\left(x_{j}\right)\right)^{2}+\left(\nu_{\tilde{A} L}\left(x_{j}\right)\right.\right.\right.\\ &\left.\left.\left.-\nu_{\tilde{B} L}\left(x_{j}\right)\right)^{2}+\left(\nu_{\tilde{A} U}\left(x_{j}\right)-\nu_{\tilde{B} U}\left(x_{j}\right)\right)^{2}\right]\right]^{1 / 2} \end{aligned} d2(A~,B~)=[4n1j=1n[(μA~L(xj)μB~L(xj))2+(μA~U(xj)μB~U(xj))2+(νA~L(xj)νB~L(xj))2+(νA~U(xj)νB~U(xj))2]]1/2

  切比雪夫距离:
d + ∞ ( A ~ , B ~ ) = max ⁡ 1 ⩽ j ⩽ n { ∣ μ A ~ L ( x j ) − μ B ~ L ( x j ) ∣ + ∣ μ A ~ U ( x j ) − μ B ~ U ( x j ) ∣ + ∣ ν A ~ L ( x j ) − ν B ~ L ( x j ) ∣ + ∣ ν A ~ U ( x j ) − ν B ~ u ( x j ) ∣ 4 n } d_{+\infty}(\tilde{A}, \tilde{B})=\max _{1 \leqslant j \leqslant n}\left\{\frac{\left|\mu_{\tilde{A} L}\left(x_{j}\right)-\mu_{\tilde{B} L}\left(x_{j}\right)\right|+\left|\mu_{\tilde{A} U}\left(x_{j}\right)-\mu_{\tilde{B} U}\left(x_{j}\right)\right|+\left|\nu_{\tilde{A} L}\left(x_{j}\right)-\nu_{\tilde{B} L}\left(x_{j}\right)\right|+\left|\nu_{\tilde{A} U}\left(x_{j}\right)-\nu_{\tilde{B} u}\left(x_{j}\right)\right|}{4 n}\right\} d+(A~,B~)=1jnmax{4nμA~L(xj)μB~L(xj)+μA~U(xj)μB~U(xj)+νA~L(xj)νB~L(xj)+νA~U(xj)νB~u(xj)}

  加权闵可夫斯基距离:
d ˉ q ( A ~ , B ~ ) = [ 1 4 ∑ j = 1 n ω j [ ( μ A ~ L ( x j ) − μ B ~ L ( x j ) ) q + ( μ A ~ U ( x j ) − μ B ~ U ( x j ) ) q + ( ν A ~ L ( x j ) − ν B ~ L ( x j ) ) q + ( ν A ~ U ( x j ) − ν B ~ U ( x j ) ) q ] ] 1 / q \begin{aligned} \bar{d}_{q}(\tilde{A}, \tilde{B})=&\left[\frac{1}{4} \sum_{j=1}^{n} \omega_{j}\left[\left(\mu_{\tilde{A} L}\left(x_{j}\right)-\mu_{\tilde{B} L}\left(x_{j}\right)\right)^{q}+\left(\mu_{\tilde{A} U}\left(x_{j}\right)-\mu_{\tilde{B} U}\left(x_{j}\right)\right)^{q}+\left(\nu_{\tilde{A} L}\left(x_{j}\right)\right.\right.\right.\\ &\left.\left.\left.-\nu_{\tilde{B} L}\left(x_{j}\right)\right)^{q}+\left(\nu_{\tilde{A} U}\left(x_{j}\right)-\nu_{\tilde{B} U}\left(x_{j}\right)\right)^{q}\right]\right]^{1 / q} \end{aligned} dˉq(A~,B~)=[41j=1nωj[(μA~L(xj)μB~L(xj))q+(μA~U(xj)μB~U(xj))q+(νA~L(xj)νB~L(xj))q+(νA~U(xj)νB~U(xj))q]]1/q

  加权汉明距离:
d ˉ 1 ( A ~ , B ~ ) = [ 1 4 ∑ j = 1 n ω j [ ∣ μ A ~ L ( x j ) − μ B ~ L ( x j ) ∣ + ∣ μ A ~ U ( x j ) − μ B ~ U ( x j ) ∣ + ∣ ( ν A ~ L ( x j ) − ν B ~ L ( x j ) ∣ + ∣ ( ν A ~ U ( x j ) − ν B ~ U ( x j ) ∣ ] ] \begin{aligned} \bar{d}_{1}(\tilde{A}, \tilde{B})=&\left[\frac{1}{4} \sum_{j=1}^{n} \omega_{j}\left[\left|\mu_{\tilde{A} L}\left(x_{j}\right)-\mu_{\tilde{B} L}\left(x_{j}\right)\right|+\left|\mu_{\tilde{A} U}\left(x_{j}\right)-\mu_{\tilde{B} U}\left(x_{j}\right)\right|+\mid\left(\nu_{\tilde{A} L}\left(x_{j}\right)\right.\right.\right.\\ &\left.-\nu_{\tilde{B} L}\left(x_{j}\right)|+|\left(\nu_{\tilde{A} U}\left(x_{j}\right)-\nu_{\tilde{B} U}\left(x_{j}\right) \mid\right]\right] \end{aligned} dˉ1(A~,B~)=[41j=1nωj[μA~L(xj)μB~L(xj)+μA~U(xj)μB~U(xj)+(νA~L(xj)νB~L(xj)+(νA~U(xj)νB~U(xj)]]

  加权欧几里得距离:
d ˉ 2 ( A ~ , B ~ ) = [ 1 4 ∑ j = 1 n ω j [ ( μ A ~ L ( x j ) − μ B ~ L ( x j ) ) 2 + ( μ A ~ U ( x j ) − μ B ~ U ( x j ) ) 2 + ( ν A ~ L ( x j ) − ν B ~ L ( x j ) ) 2 + ( ν A ~ U ( x j ) − ν B ~ U ( x j ) ) 2 ] ] 1 / 2 \begin{aligned} \bar{d}_{2}(\tilde{A}, \tilde{B})=&\left[\frac{1}{4} \sum_{j=1}^{n} \omega_{j}\left[\left(\mu_{\tilde{A} L}\left(x_{j}\right)-\mu_{\tilde{B} L}\left(x_{j}\right)\right)^{2}+\left(\mu_{\tilde{A} U}\left(x_{j}\right)-\mu_{\tilde{B} U}\left(x_{j}\right)\right)^{2}+\left(\nu_{\tilde{A} L}\left(x_{j}\right)\right.\right.\right.\\ &\left.\left.\left.-\nu_{\tilde{B} L}\left(x_{j}\right)\right)^{2}+\left(\nu_{\tilde{A} U}\left(x_{j}\right)-\nu_{\tilde{B} U}\left(x_{j}\right)\right)^{2}\right]\right]^{1 / 2} \end{aligned} dˉ2(A~,B~)=[41j=1nωj[(μA~L(xj)μB~L(xj))2+(μA~U(xj)μB~U(xj))2+(νA~L(xj)νB~L(xj))2+(νA~U(xj)νB~U(xj))2]]1/2

  加权切比雪夫距离:
d ˉ + ∞ ( A ~ , B ~ ) = max ⁡ 1 ⩽ j ⩽ n { ω j ( ∣ μ A ~ L ( x j ) − μ B ~ L ( x j ) ∣ + ∣ μ A ~ U ( x j ) − μ B ~ U ( x j ) ∣ + ∣ ν A ~ L ( x j ) − ν B ~ L ( x j ) ∣ + ∣ ν A ~ U ( x j ) − ν B ~ U ( x j ) ∣ ) 4 } \bar{d}_{+\infty}(\tilde{A}, \tilde{B})=\max _{1 \leqslant j \leqslant n}\left\{\frac{\omega_{j}\left(\left|\mu_{\tilde{A} L}\left(x_{j}\right)-\mu_{\tilde{B} L}\left(x_{j}\right)\right|+\left|\mu_{\tilde{A} U}\left(x_{j}\right)-\mu_{\tilde{B} U}\left(x_{j}\right)\right|+\left|\nu_{\tilde{A} L}\left(x_{j}\right)-\nu_{\tilde{B} L}\left(x_{j}\right)\right|+\left|\nu_{\tilde{A} U}\left(x_{j}\right)-\nu_{\tilde{B} U}\left(x_{j}\right)\right|\right)}{4}\right\} dˉ+(A~,B~)=1jnmax{4ωj(μA~L(xj)μB~L(xj)+μA~U(xj)μB~U(xj)+νA~L(xj)νB~L(xj)+νA~U(xj)νB~U(xj))}


3.4 区间直觉模糊数及其运算

  由区间直觉模糊数的定义可知,区间直觉模糊数的基本组成部分是由x的区间隶属度和区间非隶属度组成的有序区间对 α ~ = ( [ μ λ ~ L , μ λ ~ U ] , [ ν λ ~ L , ν λ ~ U ] ) \tilde{\alpha} = \left( \left[\mu_{\tilde{\lambda} L},\mu_{\tilde{\lambda} U}\right], \left[\nu_{\tilde{\lambda} L},\nu_{\tilde{\lambda} U}\right]\right ) α~=([μλ~L,μλ~U],[νλ~L,νλ~U]),称为区间直觉模糊数。其中
[ μ α ~ L , μ α ~ U ] ⊆ [ 0 , 1 ] , [ ν α ~ L , ν α ~ U ] ⊆ [ 0 , 1 ] , μ α ~ U + ν α ~ U ⩽ 1 \left[\mu_{\tilde{\alpha} L}, \mu_{\tilde{\alpha} U}\right] \subseteq[0,1], \quad\left[\nu_{\tilde{\alpha} L}, \nu_{\tilde{\alpha} U}\right] \subseteq[0,1], \quad \mu_{\tilde{\alpha} U} + \nu_{\tilde{\alpha} U} \leqslant 1 [μα~L,μα~U][0,1],[να~L,να~U][0,1],μα~U+να~U1
  显然, α ~ + = ( [ 1 , 1 ] , [ 0 , 0 ] ) {\tilde{\alpha}}^{+} = \left(\left[1,1\right],\left[0,0\right]\right) α~+=([1,1],[0,0])是最大的区间直觉模糊数,而 α ~ − = ( [ 0 , 0 ] , [ 1 , 1 ] ) {\tilde{\alpha}}^{-} = \left( \left[0,0\right], \left[1,1\right]\right) α~=([0,0],[1,1])是最小的区间直觉模糊数。

定义1.18
  设 α ~ = ( [ μ λ ~ L , μ λ ~ U ] , [ ν λ ~ L , ν λ ~ U ] ) \tilde{\alpha} = \left( \left[\mu_{\tilde{\lambda} L},\mu_{\tilde{\lambda} U}\right], \left[\nu_{\tilde{\lambda} L},\nu_{\tilde{\lambda} U}\right]\right ) α~=([μλ~L,μλ~U],[νλ~L,νλ~U])为区间直觉模糊数,定义区间直觉模糊数 α ~ \tilde{\alpha} α~的得分值 s ( α ~ ) s\left(\tilde{\alpha}\right) s(α~)和精确度 h ( α ~ ) h\left(\tilde{\alpha}\right) h(α~)为:

s ( α ~ ) = μ α ~ L + μ α ~ U − ν α ~ L − ν α ~ U 2 (3.3) s(\tilde{\alpha})=\frac{\mu_{\tilde{\alpha} L}+\mu_{\tilde{\alpha} U}-\nu_{\tilde{\alpha} L}-\nu_{\tilde{\alpha} U}}{2}\tag{3.3} s(α~)=2μα~L+μα~Uνα~Lνα~U(3.3)

h ( α ~ ) = μ α ~ L + μ α ~ U + ν α ~ L + ν α ~ U 2 (3.4) h(\tilde{\alpha})=\frac{\mu_{\tilde{\alpha} L}+\mu_{\tilde{\alpha} U}+\nu_{\tilde{\alpha} L}+\nu_{\tilde{\alpha} U}}{2}\tag{3.4} h(α~)=2μα~L+μα~U+να~L+να~U(3.4)

  设 α ~ 1 = ( [ μ α ~ 1 L , μ α ~ 1 U ] , [ ν α ~ 1 L , ν α ~ 1 U ] ) \tilde{\alpha}_{1}=\left(\left[\mu_{\tilde{\alpha}_{1} L}, \mu_{\tilde{\alpha}_{1} U}\right],\left[\nu_{\tilde{\alpha}_{1} L}, \nu_{\tilde{\alpha}_{1} U}\right]\right) α~1=([μα~1L,μα~1U],[να~1L,να~1U]) α ~ 2 = ( [ μ α ~ 2 L , μ α ~ 2 U ] , [ ν α ~ 2 L , ν α ~ 2 U ] ) \tilde{\alpha}_{2}=\left(\left[\mu_{\tilde{\alpha}_{2} L}, \mu_{\tilde{\alpha}_{2} U}\right],\left[\nu_{\tilde{\alpha}_{2} L}, \nu_{\tilde{\alpha}_{2} U}\right]\right) α~2=([μα~2L,μα~2U],[να~2L,να~2U])为区间直觉模糊数,则有

  (1) 若 s ( α ~ 1 ) < s ( α ~ 2 ) s\left(\tilde{\alpha}_{1}\right) \lt s\left(\tilde{\alpha}_{2}\right) s(α~1)<s(α~2),则 α ~ 1 \tilde{\alpha}_{1} α~1小于 α ~ 2 \tilde{\alpha}_{2} α~2,即 α ~ 1 < α ~ 2 \tilde{\alpha}_{1} \lt \tilde{\alpha}_{2} α~1<α~2

  (2) 若 s ( α ~ 1 ) = s ( α ~ 2 ) s\left(\tilde{\alpha}_{1}\right) = s\left(\tilde{\alpha}_{2}\right) s(α~1)=s(α~2),则

  ① 若 h ( α ~ 1 ) = h ( α ~ 2 ) h\left(\tilde{\alpha}_{1}\right) = h\left(\tilde{\alpha}_{2}\right) h(α~1)=h(α~2),则 α ~ 1 = α ~ 2 \tilde{\alpha}_{1} = \tilde{\alpha}_{2} α~1=α~2

  ② 若 h ( α ~ 1 ) < h ( α ~ 2 ) h\left(\tilde{\alpha}_{1}\right) \lt h\left(\tilde{\alpha}_{2}\right) h(α~1)<h(α~2),则 α ~ 1 < α ~ 2 \tilde{\alpha}_{1} \lt \tilde{\alpha}_{2} α~1<α~2

  ③ 若 h ( α ~ 1 ) > h ( α ~ 2 ) h\left(\tilde{\alpha}_{1}\right) \gt h\left(\tilde{\alpha}_{2}\right) h(α~1)>h(α~2),则 α ~ 1 > α ~ 2 \tilde{\alpha}_{1} \gt \tilde{\alpha}_{2} α~1>α~2

  区间直觉模糊数的运算法则如下:
定义1.19
  设 α ~ = ( [ μ λ ~ L , μ λ ~ U ] , [ ν λ ~ L , ν λ ~ U ] ) \tilde{\alpha} = \left( \left[\mu_{\tilde{\lambda} L},\mu_{\tilde{\lambda} U}\right], \left[\nu_{\tilde{\lambda} L},\nu_{\tilde{\lambda} U}\right]\right ) α~=([μλ~L,μλ~U],[νλ~L,νλ~U]) α ~ 1 = ( [ μ λ ~ 1 L , μ λ ~ 1 U ] , [ ν λ ~ 1 L , ν λ ~ 1 U ] ) \tilde{\alpha}_{1} = \left( \left[\mu_{{\tilde{\lambda}_{1}} L},\mu_{{\tilde{\lambda}_{1}} U}\right], \left[\nu_{{\tilde{\lambda}_{1}} L},\nu_{{\tilde{\lambda}_{1}} U}\right]\right ) α~1=([μλ~1L,μλ~1U],[νλ~1L,νλ~1U]) α ~ 2 = ( [ μ λ ~ 2 L , μ λ ~ 2 U ] , [ ν λ ~ 2 L , ν λ ~ 2 U ] ) \tilde{\alpha}_{2} = \left( \left[\mu_{{\tilde{\lambda}_{2}} L},\mu_{{\tilde{\lambda}_{2}} U}\right], \left[\nu_{{\tilde{\lambda}_{2}} L},\nu_{{\tilde{\lambda}_{2}} U}\right]\right ) α~2=([μλ~2L,μλ~2U],[νλ~2L,νλ~2U])为区间直觉模糊数,则
  (1)  α ~ ‾ = ( [ ν α ~ L , ν α ~ U ] , [ μ α ~ L , μ α ~ U ] ) \overline{\tilde{\alpha}}=\left(\left[\nu_{\tilde{\alpha} L}, \nu_{\tilde{\alpha} U}\right],\left[\mu_{\tilde{\alpha} L}, \mu_{\tilde{\alpha} U}\right]\right) α~=([να~L,να~U],[μα~L,μα~U])

  (2)  α ~ 1 ∩ α ~ 2 = ( [ min ⁡ { μ α ~ 1 , L , μ α ~ 2 , L } , min ⁡ { μ α ~ 1 , U , μ α ~ 2 , U } ] , [ max ⁡ { ν α ~ 1 , L , n u α ~ 2 L } , max ⁡ { n u A ~ 1 , U , ν A ~ 2 , U } ] ) \tilde{\alpha}_{1} \cap \tilde{\alpha}_{2} = \left( \left[ \min \left\{ \mu_{{\tilde{\alpha}_{1}}, L}, \mu_{{\tilde{\alpha}_{2}}, L}\right\}, \min \left\{ \mu_{{\tilde{\alpha}_{1}}, U}, \mu_{{\tilde{\alpha}_{2}}, U}\right\}\right],\left[\max \left\{\nu_{\tilde{\alpha}_{1}, L}, nu_{\tilde{\alpha}_{2} L}\right\}, \max \left\{nu_{{\tilde{A}_{1}}, U},\nu_{{\tilde{A}_{2}}, U}\right\} \right] \right) α~1α~2=([min{μα~1,L,μα~2,L},min{μα~1,U,μα~2,U}],[max{να~1,L,nuα~2L},max{nuA~1,U,νA~2,U}])

  (3)  α ~ 1 ∪ α ~ 2 = ( [ max ⁡ { μ α ~ 1 , L , μ α ~ 2 , L } , max ⁡ { μ α ~ 1 , U , μ α ~ 2 , U } ] , [ min ⁡ { ν α ~ 1 , L , n u α ~ 2 L } , min ⁡ { n u A ~ 1 , U , ν A ~ 2 , U } ] ) \tilde{\alpha}_{1} \cup \tilde{\alpha}_{2} = \left( \left[ \max \left\{ \mu_{{\tilde{\alpha}_{1}}, L}, \mu_{{\tilde{\alpha}_{2}}, L}\right\}, \max \left\{ \mu_{{\tilde{\alpha}_{1}}, U}, \mu_{{\tilde{\alpha}_{2}}, U}\right\}\right],\left[\min \left\{\nu_{\tilde{\alpha}_{1}, L}, nu_{\tilde{\alpha}_{2} L}\right\}, \min \left\{nu_{{\tilde{A}_{1}}, U},\nu_{{\tilde{A}_{2}}, U}\right\} \right] \right) α~1α~2=([max{μα~1,L,μα~2,L},max{μα~1,U,μα~2,U}],[min{να~1,L,nuα~2L},min{nuA~1,U,νA~2,U}])

  (4)  α ~ 1 ⊕ α ~ 2 = ( [ μ α ~ 1 , L + μ α ~ 2 L − μ α ~ 1 L μ α ~ 2 L , μ α ~ 1 U + μ α ~ 2 U − μ α ~ 1 U μ α ~ 2 U ] , [ ν α ~ 1 L ν α ~ 2 L , ν α ~ 1 U ν α ~ 2 U ] ) \color{red}{\tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2}=\left( \left[ \mu_{{\tilde{\alpha}_{1}}, L}+\mu_{{\tilde{\alpha}_{2}} L}-\mu_{{\tilde{\alpha}_{1}} L} \mu_{{\tilde{\alpha}_{2}} L}, \mu_{{\tilde{\alpha}_{1}} U}+\mu_{{\tilde{\alpha}_{2}} U}-\mu_{{\tilde{\alpha}_{1}} U} \mu_{{\tilde{\alpha}_{2}} U} \right],\left[ \nu_{{\tilde{\alpha}_{1}} L} \nu_{{\tilde{\alpha}_{2}} L}, \nu_{{\tilde{\alpha}_{1}} U} \nu_{{\tilde{\alpha}_{2}} U}\right] \right)} α~1α~2=([μα~1,L+μα~2Lμα~1Lμα~2L,μα~1U+μα~2Uμα~1Uμα~2U],[να~1Lνα~2L,να~1Uνα~2U])

  (5)  α ~ 1 ⊗ α ~ 2 = ( [ ν α ~ 1 L ν α ~ 2 L , ν α ~ 1 U ν α ~ 2 U ] , [ μ α ~ 1 , L + μ α ~ 2 L − μ α ~ 1 L μ α ~ 2 L , μ α ~ 1 U + μ α ~ 2 U − μ α ~ 1 U μ α ~ 2 U ] ) \color{red}{\tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2}=\left( \left[ \nu_{{\tilde{\alpha}_{1}} L} \nu_{{\tilde{\alpha}_{2}} L}, \nu_{{\tilde{\alpha}_{1}} U} \nu_{{\tilde{\alpha}_{2}} U}\right], \left[ \mu_{{\tilde{\alpha}_{1}}, L}+\mu_{{\tilde{\alpha}_{2}} L}-\mu_{{\tilde{\alpha}_{1}} L} \mu_{{\tilde{\alpha}_{2}} L}, \mu_{{\tilde{\alpha}_{1}} U}+\mu_{{\tilde{\alpha}_{2}} U}-\mu_{{\tilde{\alpha}_{1}} U} \mu_{{\tilde{\alpha}_{2}} U} \right] \right)} α~1α~2=([να~1Lνα~2L,να~1Uνα~2U],[μα~1,L+μα~2Lμα~1Lμα~2L,μα~1U+μα~2Uμα~1Uμα~2U])

  (6)  λ α ~ = ( [ 1 − ( 1 − μ α ~ L ) λ , 1 − ( 1 − μ α ~ U ) λ ] , [ ν α ~ L λ , ν α ~ U λ ] ) , λ > 0 \color{red}{\lambda \tilde{\alpha} = \left( \left[ 1 - \left( 1 - \mu_{\tilde{\alpha} L}\right)^{\lambda}, 1 - \left( 1 - \mu_{\tilde{\alpha} U}\right)^{\lambda} \right],\left[ \nu_{\tilde{\alpha} L}^{\lambda}, \nu_{\tilde{\alpha} U}^{\lambda}\right]\right), \lambda \gt 0} λα~=([1(1μα~L)λ,1(1μα~U)λ],[να~Lλ,να~Uλ]),λ>0

  (7)  α ~ λ = ( [ μ α ~ L λ , μ α ~ U λ ] , [ 1 − ( 1 − ν α ~ L ) λ , 1 − ( 1 − ν α ~ U ) λ ] ) , λ > 0 \color{red}{\tilde{\alpha}^{\lambda} = \left( \left[ \mu_{\tilde{\alpha} L}^{\lambda}, \mu_{\tilde{\alpha} U}^{\lambda}\right],\left[ 1 - \left( 1 - \nu_{\tilde{\alpha} L}\right)^{\lambda}, 1 - \left( 1 - \nu_{\tilde{\alpha} U}\right)^{\lambda}\right]\right), \lambda \gt 0 } α~λ=([μα~Lλ,μα~Uλ],[1(1να~L)λ,1(1να~U)λ]),λ>0

定理1.9
  设 α ~ = ( [ μ α ~ L , μ α ~ U ] , [ ν α ~ L , ν α ~ U ] ) \tilde{\alpha} = \left( \left[ \mu_{\tilde{\alpha} L}, \mu_{\tilde{\alpha} U} \right],\left[ \nu_{\tilde{\alpha} L}, \nu_{\tilde{\alpha} U} \right] \right) α~=([μα~L,μα~U],[να~L,να~U]) α ~ 1 = ( [ μ α ~ 1 L , μ α ~ 1 U ] , [ ν α ~ 1 L , ν α ~ 1 U ] ) {\tilde{\alpha}}_{1} = \left( \left[ \mu_{{\tilde{\alpha}_{1}} L}, \mu_{{\tilde{\alpha}_{1}} U} \right],\left[ \nu_{{\tilde{\alpha}_{1}} L}, \nu_{{\tilde{\alpha}_{1}} U} \right] \right) α~1=([μα~1L,μα~1U],[να~1L,να~1U]) α ~ 2 = ( [ μ α ~ 2 L , μ α ~ 2 U ] , [ ν α ~ 2 L , ν α ~ 2 U ] ) {\tilde{\alpha}_{2}} = \left( \left[ \mu_{{\tilde{\alpha}_{2}} L}, \mu_{{\tilde{\alpha}_{2}} U} \right],\left[ \nu_{{\tilde{\alpha}_{2}} L}, \nu_{{\tilde{\alpha}_{2}} U} \right] \right) α~2=([μα~2L,μα~2U],[να~2L,να~2U])为区间直觉模糊数,则 α ~ ‾ \overline{\tilde{\alpha}} α~ α 1 ~ ∪ α 2 ~ \tilde{\alpha_{1}} \cup \tilde{\alpha_{2}} α1~α2~ α 1 ~ ∩ α 2 ~ \tilde{\alpha_{1}} \cap \tilde{\alpha_{2}} α1~α2~ α 1 ~ ⊕ α 2 ~ \tilde{\alpha_{1}} \oplus \tilde{\alpha_{2}} α1~α2~ α 1 ~ ⊗ α 2 ~ \tilde{\alpha_{1}} \otimes \tilde{\alpha_{2}} α1~α2~ λ α ~ \lambda \tilde{\alpha} λα~ α ~ λ ( λ > 0 ) {\tilde{\alpha}}^{\lambda} \left( \lambda \gt 0 \right) α~λ(λ>0)均为区间直觉模糊数。

定理1.10
   α ~ = ( [ μ α ~ L , μ α ~ U ] , [ ν α ~ L , ν α ~ U ] ) \tilde{\alpha} = \left( \left[ \mu_{\tilde{\alpha} L}, \mu_{\tilde{\alpha} U} \right],\left[ \nu_{\tilde{\alpha} L}, \nu_{\tilde{\alpha} U} \right] \right) α~=([μα~L,μα~U],[να~L,να~U]) α ~ 1 = ( [ μ α ~ 1 L , μ α ~ 1 U ] , [ ν α ~ 1 L , ν α ~ 1 U ] ) {\tilde{\alpha}}_{1} = \left( \left[ \mu_{{\tilde{\alpha}_{1}} L}, \mu_{{\tilde{\alpha}_{1}} U} \right],\left[ \nu_{{\tilde{\alpha}_{1}} L}, \nu_{{\tilde{\alpha}_{1}} U} \right] \right) α~1=([μα~1L,μα~1U],[να~1L,να~1U]) α ~ 2 = ( [ μ α ~ 2 L , μ α ~ 2 U ] , [ ν α ~ 2 L , ν α ~ 2 U ] ) {\tilde{\alpha}_{2}} = \left( \left[ \mu_{{\tilde{\alpha}_{2}} L}, \mu_{{\tilde{\alpha}_{2}} U} \right],\left[ \nu_{{\tilde{\alpha}_{2}} L}, \nu_{{\tilde{\alpha}_{2}} U} \right] \right) α~2=([μα~2L,μα~2U],[να~2L,να~2U])为直觉模糊数,$\lambda,\lambda_{1},\lambda_{2} \gt 0 $,则

  (1)  α 1 ~ ⊕ α 2 ~ = α 2 ~ ⊕ α 1 ~ \tilde{\alpha_{1}} \oplus \tilde{\alpha_{2}} = \tilde{\alpha_{2}} \oplus \tilde{\alpha_{1}} α1~α2~=α2~α1~

  (2)  α 1 ~ ⊗ α 2 ~ = α 2 ~ ⊗ α 1 ~ \tilde{\alpha_{1}} \otimes \tilde{\alpha_{2}} = \tilde{\alpha_{2}} \otimes \tilde{\alpha_{1}} α1~α2~=α2~α1~

  (3)  λ ( α 1 ~ ⊕ α 2 ~ ) = λ α 1 ~ + λ α 2 ~ \lambda \left ( \tilde{\alpha_{1}} \oplus \tilde{\alpha_{2}} \right ) = \lambda \tilde{\alpha_{1}} + \lambda \tilde{\alpha_{2}} λ(α1~α2~)=λα1~+λα2~

  (4)  ( α 1 ~ ⊗ α 2 ~ ) λ = α 1 ~ λ ⊗ α 2 ~ λ {\left ( \tilde{\alpha_{1}} \otimes \tilde{\alpha_{2}} \right )}^{\lambda} = {\tilde{\alpha_{1}}}^{\lambda} \otimes {\tilde{\alpha_{2}}}^{\lambda} (α1~α2~)λ=α1~λα2~λ

  (5)  λ 1 α ~ ⊕ λ 2 α ~ = ( λ 1 + λ 2 ) α ~ \lambda_{1} \tilde{\alpha} \oplus \lambda_{2} \tilde{\alpha} = \left( \lambda_{1} + \lambda_{2} \right) \tilde{\alpha} λ1α~λ2α~=(λ1+λ2)α~

  (6)  α ~ λ 1 ⊗ α ~ λ 2 = α ~ λ 1 + λ 2 {\tilde{\alpha}}^{\lambda_{1}} \otimes {\tilde{\alpha}}^{\lambda_{2}} = {\tilde{\alpha}}^{\lambda_{1} + \lambda_{2}} α~λ1α~λ2=α~λ1+λ2


特别说明:本专栏主要参考郭子雪等所著《直觉模糊多属性决策理论方法及应用研究》书籍,部分代码计算结果与书中有所出入,请仔细甄别!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值