Part V.S1. VIKOR方法基本理论

1.1 VIKOR方法的基本思想

   VIKOR ⁡ \operatorname{VIKOR} VIKOR(VIseKriterijumska Optimizacija I Kompromisno Resenje)方法是由 O p r i c o v i c Opricovic Opricovic于1998年针对复杂系统而提出的一种基于理想解的多属性决策方法。 VIKOR ⁡ \operatorname{VIKOR} VIKOR方法的基本原理是首先确定正理想解(positive ideal solution,PIS)和负理想解(negative ideal solution,NIS),然后根据各个备选方案的属性评价值与理想解的接近程度,在可接受优势和决策过程的稳定条件下对备选方案进行排序。 VIKOR ⁡ \operatorname{VIKOR} VIKOR方法求得的解是一种折中解,是所有解中最为接近最优解的可行解,也是最优与最劣两种属性间彼此让步的结果。

  在综合评价中, VIKOR ⁡ \operatorname{VIKOR} VIKOR方法采用了由 L p j − m e t r i c L_{pj}-metric Lpjmetric发展而来的聚合函数:

L p j = { ∑ i = 1 n [ ω i ( y i + − y i j ) ( y i + − y i − ) ] p } 1 p (1.1) L_{pj}=\left\{\sum_{i=1}^{n}\left[\frac{\omega_{i}\left(y_{i}^{+}-y_{ij}\right)}{\left(y_{i}^{+}-y_{i}^{-}\right)}\right]^{p}\right\}^{\frac{1}{p}} \tag{1.1} Lpj={i=1n[(yi+yi)ωi(yi+yij)]p}p1(1.1)

  式中, 1 ≤ p ≤ ∞ ; j = 1 , 2 , ⋯   , m 1\leq p \leq \infty; j=1,2,\cdots,m 1p;j=1,2,,m m m m为备选方案的个数; y i j y_{ij} yij为备选方案 Y j Y_{j} Yj在第 i i i个属性(或准则)的评价值;测度 L p j L_{pj} Lpj为方案 Y j Y_{j} Yj与理想解的距离。 VIKOR ⁡ \operatorname{VIKOR} VIKOR方法的最大特色是最大化群体效益和最小化个体损失,所以其妥协解可被决策者接受。


1.2 权重信息已知情形下的VIKOR方法

  设多属性决策问题有 m m m个方案 Y i ( i = 1 , 2 , ⋯   , m ) Y_{i}\left(i=1,2,\cdots,m\right) Yi(i=1,2,,m),组成方案集 Y = ( Y 1 , Y 2 , ⋯   , Y m ) Y=\left(Y_{1},Y_{2},\cdots,Y_{m}\right) Y=(Y1,Y2,,Ym),评价每个方案的属性(或指标)为 G j ( j = 1 , 2 , ⋯   , n ) G_{j}\left(j=1,2,\cdots,n\right) Gj(j=1,2,,n),记属性集为 G = { G 1 , G 2 , ⋯   , G n } G=\left\{ G_{1},G_{2},\cdots,G_{n} \right\} G={G1,G2,,Gn},属性 G j ( j = 1 , 2 , ⋯   , n ) G_{j}\left(j=1,2,\cdots,n\right) Gj(j=1,2,,n)的权重已知, ω = ( ω 1 , ω 2 , ⋯   , ω n ) T \omega = {\left(\omega_{1},\omega_{2},\cdots,\omega_{n}\right)}^{T} ω=(ω1,ω2,,ωn)T为属性权重向量。如果 f i j f_{ij} fij表示方案 Y i ∈ Y Y_{i} \in Y YiY在属性 G j ∈ G G_{j} \in G GjG的评价指标值,矩阵 F = ( f i j ) m × n F = \left(f_{ij}\right)_{m×n} F=(fij)m×n为该多属性决策问题的决策矩阵,则属性权重已知条件下的 VIKOR ⁡ \operatorname{VIKOR} VIKOR方法的决策步骤如下:

  S.1 确定多属性决策问题的方案集 Y = { Y 1 , Y 2 , ⋯   , Y m } Y=\left\{Y_{1},Y_{2},\cdots,Y_{m}\right\} Y={Y1,Y2,,Ym}和属性集 G = { G 1 , G 2 , ⋯   , G n } G=\left\{G_{1}, G_{2},\cdots,G_{n}\right\} G={G1,G2,,Gn},构建多属性决策问题的决策矩阵 F = ( f i j ) m × n F=\left(f_{ij}\right)_{m×n} F=(fij)m×n

  S.2 对决策矩阵 F = ( f i j ) m × n F=\left(f_{ij}\right)_{m×n} F=(fij)m×n进行规范化处理。利用标准 0 − 1 0-1 01变换,对决策矩阵 F = ( f i j ) m × n F=\left(f_{ij}\right)_{m×n} F=(fij)m×n进行规范化处理。得到规范化决策矩阵 F ′ = ( f i j ′ ) m × n F^{'}=\left(f_{ij}^{'}\right)_{m×n} F=(fij)m×n f i j ′ f_{ij}^{'} fij的具体计算公式为:

  当属性 G j G_{j} Gj为效益型指标时,

f i j ′ = f i j − min ⁡ i ( f i j ) max ⁡ i ( f i j ) − min ⁡ i ( f i j ) , j = 1 , 2 , ⋯   , n (1.2) f_{ij}^{'} = \frac {f_{ij} - \min_{i}\left(f_{ij}\right)} {\max_{i}\left(f_{ij}\right) - \min_{i}\left(f_{ij}\right) },j=1,2,\cdots,n \tag{1.2} fij=maxi(fij)mini(fij)fijmini(fij),j=1,2,,n(1.2)

  当属性 G j G_{j} Gj为成本型指标时,

$ f_{ij}^{'} = \frac {\max_{i}\left(f_{ij}\right) - f_{ij}} {\max_{i}\left(f_{ij}\right) - \min_{i}\left(f_{ij}\right) },j=1,2,\cdots,n \tag{1.3} $

  S.3 根据规范化矩阵 F ′ = ( f i j ′ ) m × n F^{'}=\left(f_{ij}^{'}\right)_{m×n} F=(fij)m×n,确定正理想解 f + f^{+} f+和负理想解 f − f^{-} f:

f + = ( f 1 + , f 2 + , ⋯   , f n + ) , f − = ( f 1 − , f 2 − , ⋯   , f n − ) (1.4) f^{+} = \left(f_{1}^{+},f_{2}^{+},\cdots,f_{n}^{+}\right),f^{-} = \left(f_{1}^{-},f_{2}^{-},\cdots,f_{n}^{-}\right) \tag{1.4} f+=(f1+,f2+,,fn+),f=(f1,f2,,fn)(1.4)

其中, f j + = max ⁡ i ( f i j ′ ) f_{j}^{+} = \max_{i}\left(f_{ij}^{'}\right) fj+=maxi(fij) f j − = min ⁡ i ( f i j ′ ) f_{j}^{-} = \min_{i}\left(f_{ij}^{'}\right) fj=mini(fij)

  S.4 计算各备选方案 Y i ∈ Y Y_{i} \in Y YiY的群体效益值 S i S_{i} Si、个体遗憾值 R i R_{i} Ri以及折中值 Q i Q_{i} Qi:

S i = ∑ j = 1 n ω j [ f j + − f i j f j + − f j − ] (1.5) S_{i} = \sum_{j=1}^{n}\omega_{j}\left[\frac{f_{j}^{+} - f_{ij}}{f_{j}^{+} - f_{j}^{-}}\right] \tag{1.5} Si=j=1nωj[fj+fjfj+fij](1.5)

R i = max ⁡ j ω j [ f j + − f i j f j + − f j − ] (1.6) R_{i} = \max_{j}\omega_{j}\left[\frac{f_{j}^{+} - f_{ij}}{f_{j}^{+} - f_{j}^{-}}\right] \tag{1.6} Ri=jmaxωj[fj+fjfj+fij](1.6)

Q i = ν S i − S + S − − S + + ( 1 − ν ) R i − R + R − − R + , i = 1 , 2 , ⋯   , m (1.7) Q_{i} = \nu\frac{S_{i}-S^{+}}{S^{-}-S^{+}} + \left(1-\nu\right)\frac{R_{i}-R^{+}}{R^{-}-R^{+}},i=1,2,\cdots,m \tag{1.7} Qi=νSS+SiS++(1ν)RR+RiR+,i=1,2,,m(1.7)

  其中, S i S_{i} Si为最大群体效用,是 L 1 , j L_{1,j} L1,j测度; R i R_{i} Ri取小个体遗憾,是 L ∞ , j L_{\infty,j} L,j测度; ω j \omega_{j} ωj为各属性权重; S + = min ⁡ i ( S i ) S^{+}=\min_{i}(S_{i}) S+=mini(Si) S − = max ⁡ i ( S i ) S^{-}=\max_{i}(S_{i}) S=maxi(Si) R + = min ⁡ i ( R i ) R^{+}=\min_{i}(R_{i}) R+=mini(Ri), R − = max ⁡ i ( R i ) R^{-}=\max_{i}(R_{i}) R=maxi(Ri) ν \nu ν为决策机制系数, ν ∈ [ 0 , 1 ] \nu \in [0,1] ν[0,1]。当 ν > 0.5 \nu \gt 0.5 ν>0.5时,表示根据最大群体效用的决策机制进行决策;当 ν = 0.5 \nu = 0.5 ν=0.5时,表示依据决策者经过协商达成共识的决策机制进行决策;当 ν < 0.5 \nu \lt 0.5 ν<0.5时,表示根据最小个体遗憾的决策机制进行决策。

  S.5 对各方案进行排序。按 S i S_i Si R i R_i Ri以及 Q i Q_i Qi值对各备选方案进行排序,数值越小表示相应的方案越优。

  S.6 确定妥协解方案。设按 Q i Q_i Qi值递增得到的排序为 Y ( 1 ) , Y ( 2 ) , ⋯   , Y ( J ) , ⋯   , Y ( m ) Y^{(1)},Y^{(2)},\cdots,Y^{(J)},\cdots, Y^{(m)} Y(1),Y(2),,Y(J),,Y(m),则备选方案的排序可依据排序条件1和排序条件2确定。

  排序条件1 可接受优势条件: Q ( Y ( 2 ) ) − Q ( Y ( 1 ) ) ≥ 1 m − 1 Q\left(Y^{(2)}\right) - Q\left(Y^{(1)}\right) \geq \frac{1}{m-1} Q(Y(2))Q(Y(1))m11

  排序条件2 决策过程中可接受的稳定性条件:方案 Y ( 1 ) Y^{(1)} Y(1)必须也是按照 S i S_i Si值或 R i R_i Ri值排序第一的方案。

  如果排序条件 1 1 1和排序条件 2 2 2同时满足,则方案 Y ( 1 ) Y^{(1)} Y(1)在决策过程中为稳最优方案。如果排序条件 1 1 1和排序条件 2 2 2不同时满足,当只满足排序条件 1 1 1满足排序条件2时,方案 Y ( 1 ) Y^{(1)} Y(1)和方案 Y ( 2 ) Y^{(2)} Y(2)均为折中解方案;如果不满足排序多通过

Q ( Y ( 2 ) ) − Q ( Y ( 1 ) ) < 1 m − 1 Q\left(Y^{(2)}\right) - Q\left(Y^{(1)}\right) \lt \frac{1}{m-1} Q(Y(2))Q(Y(1))<m11

  得到最大的 J J J,此时方案 Y ( 1 ) , Y ( 2 ) , ⋯   , Y ( J ) Y^{(1)},Y^{(2)},\cdots,Y^{(J)} Y(1),Y(2),,Y(J)为折中解方案。


1.3 属性权重信息未知情形下的VIKOR方法

  如果多属性决策问题的属性权重 ω = ( ω 1 , ω 2 , ⋯   , ω n ) T \omega = \left(\omega_1,\omega_2,\cdots,\omega_n\right)^{T} ω=(ω1,ω2,,ωn)T完全未知,则可通过构造最优化模型的方法确定属性权重。

  设决策矩阵 F = ( f i j ) m × n F = \left(f_{ij}\right)_{m×n} F=(fij)m×n的规范化矩阵为 F ′ = ( f i j ′ ) m × n F^{'} = \left(f_{ij}^{'}\right)_{m×n} F=(fij)m×n f + = ( f 1 + , f 2 + , ⋯   , f n + ) f^{+} = \left(f_{1}^{+},f_{2}^{+},\cdots,f_{n}^{+}\right) f+=(f1+,f2+,,fn+) f − = ( f 1 − , f 2 − , ⋯   , f n − ) f^{-} = \left(f_{1}^{-},f_{2}^{-},\cdots,f_{n}^{-}\right) f=(f1,f2,,fn)分别为多属性决策问题的正理想解和负理想解。由于:

S i = ∑ j = 1 n ω j ( f j + − f i j f j + − f j − ) S_i = \sum_{j=1}^{n}\omega_{j}\left(\frac{f_{j}^{+}-f_{ij}}{f_{j}^{+}-f_{j}^{-}}\right) Si=j=1nωj(fj+fjfj+fij)

  表示的是备选方案Y到正理想解的接近程度, S i S_i Si越小说明备选方案 Y i Y_i Yi越接近正理想解,此时选择属性权重的问题即转化为求解多目标优化模型:

{ min ⁡ S i = ∑ j = 1 n ω j ( f j + − f i j f j + − f j − ) , i = 1 , 2 , ⋯   , m s.t. ∑ j = 1 n ω j 2 = 1 , ω j ≥ 0 , j = 1 , 2 , ⋯   , n (1.8) \color{blue} { \left\{ \begin{aligned} & \min{S_i} = \sum_{j=1}^{n}\omega_{j}\left(\frac{f_{j}^{+}-f_{ij}}{f_{j}^{+}-f_{j}^{-}}\right),i=1,2,\cdots,m \\ & \text{s.t.}\sum_{j=1}^{n}\omega_{j}^{2}=1, \omega_{j} \geq 0, j=1,2,\cdots,n \end{aligned} \right. \tag{1.8} } minSi=j=1nωj(fj+fjfj+fij),i=1,2,,ms.t.j=1nωj2=1,ωj0,j=1,2,,n(1.8)

  由于各备选方案之间不存在偏好关系,则求解上述多目标优化模型就等价于解以下单目标优化模型:

{ min ⁡ S = ∑ i = 1 m ∑ j = 1 n ω j ( f j + − f i j f j + − f j − ) s.t. ∑ j = 1 n ω j 2 = 1 , ω j ≥ 0 , j = 1 , 2 , ⋯   , n (1.9) \color{blue} { \left\{ \begin{aligned} & \min{S} = \sum_{i=1}^{m}\sum_{j=1}^{n}\omega_{j}\left(\frac{f_{j}^{+}-f_{ij}}{f_{j}^{+}-f_{j}^{-}}\right) \\ & \text{s.t.}\sum_{j=1}^{n}\omega_{j}^{2}=1, \omega_{j} \geq 0, j=1,2,\cdots,n \end{aligned} \right. \tag{1.9} } minS=i=1mj=1nωj(fj+fjfj+fij)s.t.j=1nωj2=1,ωj0,j=1,2,,n(1.9)

  为了求解最优化模型 ( 1.9 ) (1.9) (1.9),可构造拉格朗日函数:

L ( ω , λ ) = ∑ i = 1 m ∑ j = 1 n ω j ( f j + − f i j f j + − f j − ) + λ 2 ( ∑ j = 1 n ω j = 1 2 − 1 ) (1.10) L\left( \omega,\lambda \right) = \sum_{i=1}^{m}\sum_{j=1}^{n}\omega_{j}\left(\frac{f_{j}^{+}-f_{ij}}{f_{j}^{+}-f_{j}^{-}}\right) + \frac{\lambda}{2}\left( \sum_{j=1}^{n}\omega_{j=1}^{2}-1 \right) \tag{1.10} L(ω,λ)=i=1mj=1nωj(fj+fjfj+fij)+2λ(j=1nωj=121)(1.10)

  对式 ( 1.10 ) (1.10) (1.10)关于0和求偏导数,并令偏导数等于0,可得:

∂ L ∂ ω j = ∑ i = 1 m ( f j + − f i j ′ ) ( f j + − f j − ) ∂ L ∂ ω = 1 2 ( ∑ j = 1 n ω j = 1 2 − 1 ) = 0 \begin{aligned} & \frac {\partial{L}}{\partial{\omega_{j}}} = \sum_{i=1}^{m}\frac{\left({f_{j}^{+}-f_{ij}^{'}}\right)}{\left({f_{j}^{+}-f_{j}^{-}}\right)} \\ & \frac {\partial{L}}{\partial{\omega}} = \frac{1}{2}\left( \sum_{j=1}^{n}\omega_{j=1}^{2}-1 \right) = 0 \end{aligned} ωjL=i=1m(fj+fj)(fj+fij)ωL=21(j=1nωj=121)=0

解之可得

ω j + = ∑ i = 1 m ( f j + − f i j ′ ) / ( f j + − f j − ) ∑ j = 1 n [ ∑ i = 1 m ( f j + − f i j ′ ) / ( f j + − f j − ) ] 2 (1.11) \omega_{j}^{+}=\frac{\sum_{i=1}^{m}\left(f_{j}^{+}-f_{i j}^{\prime}\right) /\left(f_{j}^{+}-f_{j}^{-}\right)}{\sqrt{\sum_{j=1}^{n}\left[\sum_{i=1}^{m}\left(f_{j}^{+}-f_{i j}^{\prime}\right) /\left(f_{j}^{+}-f_{j}^{-}\right)\right]^{2}}} \\ \tag{1.11} ωj+=j=1n[i=1m(fj+fij)/(fj+fj)]2 i=1m(fj+fij)/(fj+fj)(1.11)

ω j + \omega_{j}^{+} ωj+进行归一化可得属性 G j = ( 1 , 2 , ⋯   , n ) G_{j}=\left(1,2,\cdots,n\right) Gj=(1,2,,n)的权重为:

ω j ∗ = ∑ i = 1 m ( f j ∗ − f i j ′ ) / ( f j ∗ − f j − ) ∑ j = 1 n ∑ i = 1 m ( f j ∗ − f i j ′ ) / ( f j ∗ − f j − ) , j = 1 , 2 , ⋯   , n (1.12) \omega_{j}^{*}=\frac{\sum_{i=1}^{m}\left(f_{j}^{*}-f_{i j}^{\prime}\right) /\left(f_{j}^{*}-f_{j}^{-}\right)}{\sum_{j=1}^{n} \sum_{i=1}^{m}\left(f_{j}^{*}-f_{i j}^{\prime}\right) /\left(f_{j}^{*}-f_{j}^{-}\right)}, \quad j=1,2, \cdots, n \tag{1.12} ωj=j=1ni=1m(fjfij)/(fjfj)i=1m(fjfij)/(fjfj),j=1,2,,n(1.12)


1.4 属性权重完全未知情形下VIKOR决策方法

  设多属性决策问题有 m m m个方案 Y i ( i = 1 , 2 , ⋯   , m ) Y_{i}\left(i=1,2,\cdots,m\right) Yi(i=1,2,,m),组成方案集 Y = ( Y 1 , Y 2 , ⋯   , Y m ) Y=\left(Y_{1},Y_{2},\cdots,Y_{m}\right) Y=(Y1,Y2,,Ym),评价每个方案的属性(或指标)为 G j ( j = 1 , 2 , ⋯   , n ) G_{j}\left(j=1,2,\cdots,n\right) Gj(j=1,2,,n),记属性集为 G = { G 1 , G 2 , ⋯   , G n } G=\left\{ G_{1},G_{2},\cdots,G_{n} \right\} G={G1,G2,,Gn},属性 G j ( j = 1 , 2 , ⋯   , n ) G_{j}\left(j=1,2,\cdots,n\right) Gj(j=1,2,,n)的权重已知, ω = ( ω 1 , ω 2 , ⋯   , ω n ) T \omega = {\left(\omega_{1},\omega_{2},\cdots,\omega_{n}\right)}^{T} ω=(ω1,ω2,,ωn)T为属性权重向量。如果 f i j f_{ij} fij表示方案 Y i ∈ Y Y_{i} \in Y YiY在属性 G j ∈ G G_{j} \in G GjG的评价指标值,矩阵 F = ( f i j ) m × n F = \left(f_{ij}\right)_{m×n} F=(fij)m×n为该多属性决策问题的决策矩阵,则属性权重已知条件下的 VIKOR ⁡ \operatorname{VIKOR} VIKOR方法的决策步骤如下:

  S.1 确定多属性决策问题的方案集 Y = { Y 1 , Y 2 , ⋯   , Y m } Y=\left\{Y_{1},Y_{2},\cdots,Y_{m}\right\} Y={Y1,Y2,,Ym}和属性集 G = { G 1 , G 2 , ⋯   , G n } G=\left\{G_{1}, G_{2},\cdots,G_{n}\right\} G={G1,G2,,Gn},构建多属性决策问题的决策矩阵 F = ( f i j ) m × n F=\left(f_{ij}\right)_{m×n} F=(fij)m×n

  S.2 对决策矩阵 F = ( f i j ) m × n F=\left(f_{ij}\right)_{m×n} F=(fij)m×n进行规范化处理。利用标准 0 − 1 0-1 01变换,对决策矩阵 F = ( f i j ) m × n F=\left(f_{ij}\right)_{m×n} F=(fij)m×n进行规范化处理。得到规范化决策矩阵 F ′ = ( f i j ′ ) m × n F^{'}=\left(f_{ij}^{'}\right)_{m×n} F=(fij)m×n f i j ′ f_{ij}^{'} fij的具体计算公式为:

  当属性 G j G_{j} Gj为效益型指标时,

f i j ′ = f i j − min ⁡ i ( f i j ) max ⁡ i ( f i j ) − min ⁡ i ( f i j ) , j = 1 , 2 , ⋯   , n f_{ij}^{'} = \frac {f_{ij} - \min_{i}\left(f_{ij}\right)} {\max_{i}\left(f_{ij}\right) - \min_{i}\left(f_{ij}\right) },j=1,2,\cdots,n fij=maxi(fij)mini(fij)fijmini(fij),j=1,2,,n

  当属性 G j G_{j} Gj为成本型指标时,

f i j ′ = max ⁡ i ( f i j ) − f i j max ⁡ i ( f i j ) − min ⁡ i ( f i j ) , j = 1 , 2 , ⋯   , n f_{ij}^{'} = \frac {\max_{i}\left(f_{ij}\right) - f_{ij}} {\max_{i}\left(f_{ij}\right) - \min_{i}\left(f_{ij}\right) },j=1,2,\cdots,n fij=maxi(fij)mini(fij)maxi(fij)fij,j=1,2,,n

  S.3 根据规范化矩阵 F ′ = ( f i j ′ ) m × n F^{'}=\left(f_{ij}^{'}\right)_{m×n} F=(fij)m×n,确定正理想解 f + f^{+} f+和负理想解 f − f^{-} f:

f + = ( f 1 + , f 2 + , ⋯   , f n + ) , f − = ( f 1 − , f 2 − , ⋯   , f n − ) f^{+} = \left(f_{1}^{+},f_{2}^{+},\cdots,f_{n}^{+}\right),f^{-} = \left(f_{1}^{-},f_{2}^{-},\cdots,f_{n}^{-}\right) f+=(f1+,f2+,,fn+),f=(f1,f2,,fn)

  其中, f j + = max ⁡ i ( f i j ′ ) f_{j}^{+} = \max_{i}\left(f_{ij}^{'}\right) fj+=maxi(fij) f j − = min ⁡ i ( f i j ′ ) f_{j}^{-} = \min_{i}\left(f_{ij}^{'}\right) fj=mini(fij)

  S.4利用式 ( 1.12 ) (1.12) (1.12)计算属性 G j ( j = 1 , 2 , ⋯   , n ) G_{j}\left(j=1,2,\cdots,n\right) Gj(j=1,2,,n)的权重 ω j ( j = 1 , 2 , ⋯   , n ) \omega_{j}\left(j=1,2,\cdots,n\right) ωj(j=1,2,,n),得到权重向量 ω = ( ω 1 , ω 2 , ⋯   , ω n ) \omega = \left(\omega_1,\omega_2,\cdots,\omega_n\right) ω=(ω1,ω2,,ωn)

  S.5 计算各备选方案 Y i ∈ Y Y_{i} \in Y YiY的群体效益值 S i S_{i} Si、个体遗憾值 R i R_{i} Ri、折中值 Q i Q_{i} Qi

S i = ∑ j = 1 n ω j [ f j + − f i j f j + − f j − ] S_{i} = \sum_{j=1}^{n}\omega_{j}\left[\frac{f_{j}^{+} - f_{ij}}{f_{j}^{+} - f_{j}^{-}}\right] Si=j=1nωj[fj+fjfj+fij]

R i = max ⁡ j ω j [ f j + − f i j f j + − f j − ] R_{i} = \max_{j}\omega_{j}\left[\frac{f_{j}^{+} - f_{ij}}{f_{j}^{+} - f_{j}^{-}}\right] Ri=jmaxωj[fj+fjfj+fij]

Q i = ν S i − S + S − − S + + ( 1 − ν ) R i − R + R − − R + , i = 1 , 2 , ⋯   , m Q_{i} = \nu\frac{S_{i}-S^{+}}{S^{-}-S^{+}} + \left(1-\nu\right)\frac{R_{i}-R^{+}}{R^{-}-R^{+}},i=1,2,\cdots,m Qi=νSS+SiS++(1ν)RR+RiR+,i=1,2,,m

  并按 S i S_{i} Si R i R_{i} Ri Q i Q_{i} Qi值对各备选方案进行排序,数值越小表示相应的方案更优。

  S.6 确定妥协解方案。设按 Q i Q_i Qi值递增得到的排序为 Y ( 1 ) , Y ( 2 ) , ⋯   , Y ( J ) , ⋯   , Y ( m ) Y^{(1)},Y^{(2)},\cdots,Y^{(J)},\cdots, Y^{(m)} Y(1),Y(2),,Y(J),,Y(m),则依据排序条件 1 1 1和排序条件 2 2 2可确定备选方案的优劣排序,并得到最优方案或折中方案。

备选方案的排序可依据排序条件1和排序条件2确定。

  排序条件1 可接受优势条件: Q ( Y ( 2 ) ) − Q ( Y ( 1 ) ) ≥ 1 m − 1 Q\left(Y^{(2)}\right) - Q\left(Y^{(1)}\right) \geq \frac{1}{m-1} Q(Y(2))Q(Y(1))m11

  排序条件2 决策过程中可接受的稳定性条件:方案 Y ( 1 ) Y^{(1)} Y(1)必须也是按照 S i S_i Si值或 R i R_i Ri值排序第一的方案。


特别说明:本专栏主要参考郭子雪等所著《直觉模糊多属性决策理论方法及应用研究》书籍,部分代码计算结果与书中有所出入,请仔细甄别!

  • 7
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值