Part I. S2. 直觉模糊集理论


2.1 直觉模糊集定义

定义1.7
  设 X X X是一个非空经典集合,则称
A ~ = { ⟨ x , μ A ~ ( x ) , ν A ~ ( x ) ⟩ ∣ x ∈ X } (2.1) \tilde {A} = \left\{ \left\langle x,\mu_{\tilde{A}}(x), \nu_{\tilde{A}}(x) \right\rangle | x\in X \right\}\tag{2.1} A~={x,μA~(x),νA~(x)xX}(2.1)
  为 X X X上的一个直觉模糊集,其中 μ A ~ ( x ) \mu_{\tilde{A}}(x) μA~(x) v A ~ ( x ) v_{\tilde{A}}(x) vA~(x)分别为元素x属于 A ~ \tilde{A} A~的隶属度和非隶属度,即
μ A ~ : X → [ 0 , 1 ] , x ∈ X → μ A ~ ( x ) ∈ [ 0 , 1 ] \mu_{\tilde{A}}:X \rightarrow [0,1], x \in X \rightarrow \mu_{\tilde{A}}(x) \in [0,1] μA~:X[0,1],xXμA~(x)[0,1]
ν A ~ : X → [ 0 , 1 ] , x ∈ X → ν A ~ ( x ) ∈ [ 0 , 1 ] \nu_{\tilde{A}}:X \rightarrow [0,1], x \in X \rightarrow \nu_{\tilde{A}}(x) \in [0,1] νA~:X[0,1],xXνA~(x)[0,1]
  且满足
0 ≤ μ A ~ ( x ) + ν A ~ ( x ) ≤ 1 , x ∈ X 0 \leq \mu_{\tilde{A}}(x) + \nu_{\tilde{A}}(x) \leq 1, x \in X 0μA~(x)+νA~(x)1,xX
  式中, μ A ~ \mu_{\tilde{A}} μA~ ν A ~ \nu_{\tilde{A}} νA~分别表示支持元素x属于集合 A A A的证据所导出的肯定隶属度的下界和反对元素x属于集合 A A A的证据所导出的否定隶属度的下界。 X X X上所有直觉模糊集的集合记为 F ( X ) F(X) F(X)

  直觉模糊集可以简记为 A ~ = ⟨ x , μ A ~ , ν A ~ ⟩ \tilde{A}=\left\langle x,\mu_{\tilde{A}},\nu_{\tilde{A}}\right\rangle A~=x,μA~,νA~或者 A ~ = ⟨ μ A ~ , ν A ~ ⟩ / x \tilde{A}=\left\langle\mu_{\tilde{A}},\nu_{\tilde{A}}\right\rangle/x A~=μA~,νA~/x

  显然,每一个模糊集 A ~ \tilde{A} A~对应于下列直觉模糊集:
A ~ = { ⟨ x , μ A ~ ( x ) , 1 − μ A ~ ( x ) ⟩ ∣ x ∈ X } (2.2) \tilde{A} = \left\{ \left\langle x,\mu_{\tilde{A}}(x),1-\mu_{\tilde{A}}(x)\right\rangle|x \in X \right\}\tag{2.2} A~={x,μA~(x),1μA~(x)xX}(2.2)
  对于任一 x ∈ X x \in X xX,称 π A ~ = 1 − μ A ~ ( x ) − ν A ~ ( x ) \pi_{\tilde{A}}=1-\mu_{\tilde{A}}(x)-\nu_{\tilde{A}}(x) πA~=1μA~(x)νA~(x)为直觉模糊集 A ~ \tilde{A} A~中元素x的直觉指数(intuitionistic index),它表示元素x A ~ \tilde{A} A~的犹豫度(hesitancy degree)。显然,对于每一个 x ∈ X x \in X xX 0 ≤ π A ~ ≤ 1 0 \leq \pi_{\tilde{A}} \leq 1 0πA~1。特别地,如果
π A ~ ( x ) = 1 − μ A ~ ( x ) − [ 1 − μ A ~ ] = 0 , x ∈ X (2.3) \pi_{\tilde{A}}(x)=1-\mu_{\tilde{A}}(x)-[1-\mu_{\tilde{A}}]=0, x \in X\tag{2.3} πA~(x)=1μA~(x)[1μA~]=0,xX(2.3)
  则直觉模糊集 A ~ \tilde{A} A~退化为Zadeh的模糊集。因此,Zadeh的模糊集是直觉模糊集的一个特例。

  示例

6个梨属于成熟和不成熟的程度分别为 [ ( 0.6 , 0.3 ) , ( 0.7 , 0.2 ) , ( 0.6 , 0.4 ) , ( 0.5 , 0.2 ) , ( 0.7 , 0.2 ) , ( 0.8 , 0.1 ) ] [(0.6,0.3),(0.7,0.2),(0.6,0.4),(0.5,0.2),(0.7,0.2),(0.8,0.1)] [(0.6,0.3),(0.7,0.2),(0.6,0.4),(0.5,0.2),(0.7,0.2),(0.8,0.1)]
其中第1个梨属于成熟的概率为0.6,属于不成熟的概率为0.3


2.2 直觉模糊集运算法则

定义1.8
  设 A ~ \tilde{A} A~ B ~ \tilde{B} B~是论域X上的两个直觉模糊集, A ~ = { ⟨ x , μ A ~ ( x ) , ν A ~ ( x ) ⟩ ∣ x ∈ X } \tilde{A}=\left\{ \left\langle x,\mu_{\tilde{A}}(x),\nu_{\tilde{A}}(x)\right\rangle|x \in X \right\} A~={x,μA~(x),νA~(x)xX} B ~ = { ⟨ x , μ B ~ ( x ) , ν B ~ ( x ) ⟩ ∣ x ∈ X } \tilde{B}=\left\{ \left\langle x,\mu_{\tilde{B}}(x),\nu_{\tilde{B}}(x)\right\rangle|x \in X \right\} B~={x,μB~(x),νB~(x)xX} λ > 0 \lambda \gt 0 λ>0是任意实数,则

  (1) 直觉模糊集的包含关系: A ~ ⊆ B ~ \tilde{A} \subseteq \tilde{B} A~B~当且仅当 ∀ x ∈ X , μ A ~ ( x ) ≤ μ B ~ \forall x \in X, \mu_{\tilde{A}}(x)\leq \mu_{\tilde{B}} xX,μA~(x)μB~ ν A ~ ( x ) ≥ ν B ~ \nu_{\tilde{A}}(x)\geq \nu_{\tilde{B}} νA~(x)νB~

  (2) 直觉模糊集的相等关系: A ~ = B ~ \tilde{A} = \tilde{B} A~=B~当且仅当 ∀ x ∈ X , μ A ~ ( x ) = μ B ~ \forall x \in X, \mu_{\tilde{A}}(x)= \mu_{\tilde{B}} xX,μA~(x)=μB~ ν A ~ ( x ) = ν B ~ \nu_{\tilde{A}}(x)= \nu_{\tilde{B}} νA~(x)=νB~

  (3) 直觉模糊集的补:
( A ~ ) c = { ⟨ x , ν A ~ ( x ) , μ A ~ ( x ) ⟩ ∣ x ∈ X } {(\tilde{A})}^c = \left\{ \left\langle x,\nu_{\tilde{A}}(x),\mu_{\tilde{A}}(x) \right\rangle|x \in X \right\} (A~)c={x,νA~(x),μA~(x)xX}

  (4) 直觉模糊集的交:
A ~ ∩ B ~ = { ⟨ x , μ A ~ ( x ) ∧ μ B ~ ( x ) , ν A ~ ( x ) ∨ ν B ~ ( x ) ⟩ ∣ x ∈ X } \tilde{A} \cap \tilde{B} = \left\{ \left\langle x,\mu_{\tilde{A}}(x)\wedge\mu_{\tilde{B}}(x),\nu_{\tilde{A}}(x)\vee\nu_{\tilde{B}}(x) \right\rangle|x \in X \right\} A~B~={x,μA~(x)μB~(x),νA~(x)νB~(x)xX}
式中,符号“ ∧ \wedge ”“ ∨ \vee ”分别表示取小或取大算子,即 min ⁡ \min min max ⁡ \max max算子。

  (5) 直觉模糊的并:
A ~ ∪ B ~ = { ⟨ x , μ A ~ ( x ) ∨ μ B ~ ( x ) , ν A ~ ( x ) ∧ ν B ~ ( x ) ⟩ ∣ x ∈ X } \tilde{A} \cup \tilde{B} = \left\{ \left\langle x,\mu_{\tilde{A}}(x)\vee\mu_{\tilde{B}}(x),\nu_{\tilde{A}}(x)\wedge\nu_{\tilde{B}}(x) \right\rangle|x \in X \right\} A~B~={x,μA~(x)μB~(x),νA~(x)νB~(x)xX}

  (6) 直觉模糊集的和:
A ~ + B ~ = { ⟨ x , μ A ~ ( x ) + μ B ~ ( x ) − μ A ~ ( x ) μ B ~ ( x ) , ν A ~ ( x ) ν B ~ ( x ) ⟩ ∣ x ∈ X } \tilde{A} + \tilde{B} = \left\{ \left\langle x,\mu_{\tilde{A}}(x) + \mu_{\tilde{B}}(x) - \mu_{\tilde{A}}(x)\mu_{\tilde{B}}(x),\nu_{\tilde{A}}(x)\nu_{\tilde{B}}(x) \right\rangle|x \in X \right\} A~+B~={x,μA~(x)+μB~(x)μA~(x)μB~(x),νA~(x)νB~(x)xX}

  (7) 直觉模糊集的积:
A ~ ⋅ B ~ = { ⟨ x , μ A ~ ( x ) μ B ~ ( x ) , ν A ~ ( x ) + ν B ~ ( x ) − μ A ~ ( x ) μ B ~ ( x ) ⟩ ∣ x ∈ X } \tilde{A} \centerdot \tilde{B} = \left\{ \left\langle x,\mu_{\tilde{A}}(x) \mu_{\tilde{B}}(x),\nu_{\tilde{A}}(x) + \nu_{\tilde{B}}(x) - \mu_{\tilde{A}}(x)\mu_{\tilde{B}}(x) \right\rangle|x \in X \right\} A~B~={x,μA~(x)μB~(x),νA~(x)+νB~(x)μA~(x)μB~(x)xX}

  (8) 直觉模糊集与数的乘积:
λ A ~ = { ⟨ x , 1 − ( 1 − μ A ~ ( x ) ) λ , ( ν A ~ ) λ ⟩ ∣ x ∈ X } \lambda \tilde{A} = \left\{ \left\langle x,1-{(1-\mu_{\tilde{A}}(x))}^{\lambda},{(\nu_{\tilde{A}})}^{\lambda} \right\rangle|x \in X \right\} λA~={x,1(1μA~(x))λ,(νA~)λxX}

  (9) 直觉模糊集的乘方:
( A ~ ) λ = { ⟨ x , ( μ A ~ ) λ , 1 − ( 1 − ν A ~ ( x ) ) λ ⟩ ∣ x ∈ X } {(\tilde{A})}^{\lambda} = \left\{ \left\langle x,{(\mu_{\tilde{A}})}^{\lambda},1-{(1-\nu_{\tilde{A}}(x))}^{\lambda} \right\rangle|x \in X \right\} (A~)λ={x,(μA~)λ,1(1νA~(x))λxX}

  截集是直觉模糊集中的一个重要概念,是建立直觉模糊集与清晰集合之间关系的桥梁。

定义1.9
  设 A ~ = { ⟨ x , μ t i l d e A ( x ) , ν A ~ ( x ) ⟩ ∣ x ∈ X } \tilde{A}=\left\{ \left\langle x,\mu_{tilde{A}}(x),\nu_{\tilde{A}}(x) \right\rangle|x \in X \right\} A~={x,μtildeA(x),νA~(x)xX}是论域X上的1个直觉模糊集,对任意有序对 ⟨ α , β ⟩ \left\langle\alpha,\beta \right\rangle α,β,其中 α ∈ [ 0 , 1 ] , β ∈ [ 0 , 1 ] \alpha \in [0,1],\beta \in [0,1] α[0,1]β[0,1],且 0 ≤ α + β ≤ 1 0 \leq \alpha + \beta \leq 1 0α+β1,称集合
A ~ ⟨ α , β ⟩ = { x ∣ μ A ~ ( x ) ≥ α , ν A ~ ≤ β , x ∈ X } (2.4) {\tilde{A}}_{\left\langle\alpha,\beta\right\rangle = \left\{x|\mu_{\tilde{A}}(x)\geq\alpha,\nu_{\tilde{A}}\leq\beta, x \in X \right\}}\tag{2.4} A~α,β={xμA~(x)α,νA~β,xX}(2.4)
为直觉模糊集 A ~ \tilde{A} A~ ⟨ α , β ⟩ \left\langle\alpha,\beta\right\rangle α,β截集(或水平集), ⟨ α , β ⟩ \left\langle\alpha,\beta\right\rangle α,β称为置信水平或置信度。 α = 1 , β = 0 \alpha=1,\beta=0 α=1,β=0时的截集即 A ~ ⟨ 1 , 0 ⟩ {\tilde{A}}_{\left\langle 1,0\right\rangle} A~1,0称为直觉模糊集 A ~ \tilde{A} A~的核; α = 0 , β = 1 \alpha=0,\beta=1 α=0,β=1时的截集即 A ~ ⟨ 0 , 1 ⟩ {\tilde{A}}_{\left\langle0,1\right\rangle} A~0,1称为直觉模糊集 A ~ \tilde{A} A~的支撑。

  显然,若两个有序对 ⟨ α 1 , β 1 ⟩ \left\langle{\alpha}_1,{\beta}_1\right\rangle α1,β1 ⟨ α 2 , β 2 ⟩ \left\langle{\alpha}_2,{\beta}_2\right\rangle α2,β2满足 ⟨ α 1 , β 1 ⟩ ≤ ⟨ α 2 , β 2 ⟩ \left\langle{\alpha}_1,{\beta}_1\right\rangle\leq\left\langle{\alpha}_2,{\beta}_2\right\rangle α1,β1α2,β2,则有 A ~ ⟨ α 1 , β 1 ⟩ ⊆ A ~ ⟨ α 2 , β 2 ⟩ {\tilde{A}}_{\left\langle{\alpha}_1,{\beta}_1\right\rangle}\subseteq{\tilde{A}}_{\left\langle{\alpha}_2,{\beta}_2\right\rangle} A~α1,β1A~α2,β2
  类似地,可以定义直觉模糊集的 α \alpha α截集核 β \beta β截集:
A ~ α = { x ∣ μ A ~ ( x ) ≥ α , x ∈ X } (2.5) {\tilde{A}}_{\alpha}=\left\{x|\mu_{\tilde{A}}(x)\geq\alpha,x \in X \right\}\tag{2.5} A~α={xμA~(x)α,xX}(2.5)
A ~ β = { x ∣ ν A ~ ( x ) ≤ β , x ∈ X } (2.6) {\tilde{A}}_{\beta}=\left\{x|\nu_{\tilde{A}}(x)\leq\beta,x \in X \right\}\tag{2.6} A~β={xνA~(x)β,xX}(2.6)
其中, α ∈ [ 0 , 1 ] , β ∈ [ 0 , 1 ] \alpha \in [0,1],\beta \in [0,1] α[0,1]β[0,1]

  由此,可以定义一个新的直觉模糊集:
⟨ α , β ⟩ A ~ ⟨ α , β ⟩ = { ⟨ x , α ∧ μ A ~ ⟨ α , β ⟩ ( x ) , β ∨ ν A ~ α , β ( x ) ⟩ ∣ x ∈ X } \left\langle\alpha,\beta\right\rangle{\tilde{A}}_{\left\langle\alpha,\beta\right\rangle}=\left\{ \left\langle x,\alpha \wedge \mu_{{\tilde{A}}_{\left\langle\alpha,\beta\right\rangle}}(x),\beta \vee \nu_{{\tilde{A}}_{\alpha,\beta}}(x)\right\rangle|x \in X \right\} α,βA~α,β={x,αμA~α,β(x),βνA~α,β(x)xX}
于是直觉模糊集 A ~ \tilde{A} A~可以用 < ⟨ α , β ⟩ <\left\langle \alpha,\beta \right\rangle <α,β截集(或水平集)表示。

定理1.3
  直觉模糊集 A ~ \tilde{A} A~可用截集表示为
A ~ = ⋃ α , β ∈ D { ⟨ α , β ⟩ A ~ ⟨ α , β ⟩ } \tilde{A}=\bigcup_{{\alpha,\beta}\in D}\left\{ \left\langle \alpha,\beta \right\rangle{{\tilde{A}}_{ \left\langle \alpha,\beta \right\rangle}}\right\} A~=α,βD{α,βA~α,β}

其中, D = { ⟨ μ s , ν s ⟩ ∣ S ∧ M } D = \{ \left\langle \mu_s,\nu_s \right\rangle|S \wedge M\} D={μs,νsSM} M = { ⟨ μ i , ν i ⟩ ∣ i = 1 , 2 , . . . , m } M = \{ \left\langle\mu_i, \nu_i\right\rangle | i=1,2,...,m \} M={μi,νii=1,2,...,m} μ s = ⋀ 1 : ⟨ μ i , ν i ⟩ ∈ S { μ i } \mu_{s}=\bigwedge_{1:\left\langle\mu_{i}, \nu_{i}\right\rangle \in S} \left\{\mu_{i}\right\} μs=1:μi,νiS{μi} ν s = ∨ i : < μ i , ν i > ∈ S { ν i } {\nu_s} = \underset{i:<\mu_i, \nu_i> \in S} {\vee} \{\nu_{i}\} νs=i:<μi,νi>S{νi}
  定理1.3表明,直觉模糊集 A ~ \tilde{A} A~可以由若干个清晰的截集(或水平集)表示,它建立了直觉模糊集与清晰集合之间的关系,为利用清晰集合研究直觉模糊集提供了重要基础。

  示例

一箱梨有6个,依次编号为1-6,甲乙分别对每个梨属于成熟和属于不成熟进行评价,得到以下结果:
A 甲 = ( 0 , 6 , 0.4 ) , ( 0.7 , 0.2 ) , ( 0.7 , 0.2 ) , ( 0.8 , 0.1 ) , ( 0.8 , 0.2 ) , ( 0.6 , 0.3 ) A_{甲}={(0,6,0.4),(0.7,0.2),(0.7,0.2),(0.8,0.1),(0.8,0.2),(0.6,0.3)} A=(0,6,0.4),(0.7,0.2),(0.7,0.2),(0.8,0.1),(0.8,0.2),(0.6,0.3)
A 乙 = ( 0 , 6 , 0.3 ) , ( 0.6 , 0.3 ) , ( 0.6 , 0.2 ) , ( 0.7 , 0.2 ) , ( 0.7 , 0.2 ) , ( 0.7 , 0.2 ) A_{乙}={(0,6,0.3),(0.6,0.3),(0.6,0.2),(0.7,0.2),(0.7,0.2),(0.7,0.2)} A=(0,6,0.3),(0.6,0.3),(0.6,0.2),(0.7,0.2),(0.7,0.2),(0.7,0.2)

  计算代码(python)如下:

# 注意,第一行表示属于,第二行表示不属于
import numpy as np
A = [[0.6,0.7,0.7,0.8,0.8,0.6],[0.4,0.2,0.2,0.1,0.2,0.3]]
B = [[0.6,0.6,0.6,0.7,0.7,0.7],[0.3,0.3,0.2,0.2,0.2,0.2]]

A = np.array(A)
B = np.array(B)

# 判断A、B之间的包含关系
def A_in_B(A,B):
    label_A_B = np.zeros(A.shape[1])
    label_B_A = np.zeros(A.shape[1])
    shape = A.shape
    for i in range(shape[1]): #每一列对比
        A_belong = A[0][i]
        A_not_belong = A[1][i]
        B_belong = B[0][i]
        B_not_belong = B[1][i]
        if A_belong <= B_belong and A_not_belong >= B_not_belong:
            label_A_B[i] = 1
        elif A_belong >= B_belong and A_not_belong <= B_not_belong:
            label_B_A[i] = 1
    sum_A = label_A_B.sum()
    sum_B = label_B_A.sum()
    if int(sum_A) == A.shape[1]:
        print('A belongs to B!')
    elif int(sum_B) == A.shape[1]:
        print('B belongs to A!')
    else:
        print('No belongs')
# 测试
print('=========包含关系结果==========')           
A_in_B(A,B)
print('\n')

## 求补集
def get_complement(arr):
    return [arr[1],arr[0]]
#测试
A_c = get_complement(A)
B_c = get_complement(B)
print('=========补集计算结果==========')
print("直觉模糊集A的补集为:\n{}".format(A_c))
print("直觉模糊集B的补集为:\n{}".format(B_c))
print('\n')

## 求交集
def get_intersection(A,B):
    intersection = np.zeros(A.shape)
    for i in range(A.shape[1]):
        intersection[0][i] = min(A[0][i],B[0][i])
        intersection[1][i] = max(A[1][i],B[1][i])
    return intersection
# 测试
print('=========交集计算结果==========')
intersection = get_intersection(A,B)
print("直觉模糊集A和直觉模糊集B的交集为:\n{}".format(intersection))
print('\n')

## 求并集
def get_union(A,B):
    union = np.zeros(A.shape)
    for i in range(A.shape[1]):
        union[0][i] = max(A[0][i],B[0][i])
        union[1][i] = max(A[1][i],B[1][i])
    return union
# 测试
print('=========并集计算结果==========')
union = get_union(A,B)
print("直觉模糊集A和直觉模糊集B的并集为:\n{}".format(union))
print('\n')

## 求和
def get_sum(A,B):
    sum_R = np.zeros(A.shape)
    for i in range(A.shape[1]):
        sum_R[0][i] = A[0][i] + B[0][i] - A[0][i] * B[0][i]
        sum_R[1][i] = A[1][i] * B[1][i]
    return sum_R
# 测试
print('=========求和计算结果==========')
sum_r = get_sum(A,B)
print("直觉模糊集A和直觉模糊集B的和为:\n{}".format(sum_r))
print('\n')

## 求积
def get_quadrature(A,B):
    quadrature = np.zeros(A.shape)
    for i in range(A.shape[1]):
        quadrature[0][i] = A[0][i] * B[0][i]
        quadrature[1][i] = A[1][i] + B[1][i] - A[1][i] * B[1][i]
    return quadrature
# 测试
print('=========并积计算结果==========')
quadrature = get_quadrature(A,B)
print("直觉模糊集A和直觉模糊集B的积为:\n{}".format(quadrature))
print('\n')

## 数乘
def get_number_multiplication(arr,factor):
    multi_fator = np.zeros(arr.shape)
    for i in range(arr.shape[1]):
        multi_fator[0][i] = 1 - np.power(1 - arr[0][i],factor)
        multi_fator[1][i] = np.power(arr[1][i],factor)
    return multi_fator
#测试
A_nm = get_number_multiplication(A,0.6)
B_nm = get_number_multiplication(B,0.6)
print('=========数乘计算结果==========')
print("直觉模糊集A的数乘(×0.6)结果为:\n{}".format(A_nm))
print("直觉模糊集B的数乘(×0.6)结果为:\n{}".format(B_nm))
print('\n')

## 乘方
def get_power_number(arr,factor):
    power_factor = np.zeros(arr.shape)
    for i in range(arr.shape[1]):
        power_factor[0][i] = np.power(arr[0][i],factor)
        power_factor[1][i] = 1 - np.power(1 - arr[1][i],factor)
    return power_factor
#测试
A_pn = get_power_number(A,0.6)
B_pn = get_power_number(B,0.6)
print('=========乘方计算结果==========')
print("直觉模糊集A的乘方(×0.6)结果为:\n{}".format(A_pn))
print("直觉模糊集B的乘方(×0.6)结果为:\n{}".format(B_pn))
print('\n')

  运行结果为:

= = = = = = = = = 包 含 关 系 结 果 = = = = = = = = = = =========包含关系结果========== ===================
No belongs
= = = = = = = = = 补 集 计 算 结 果 = = = = = = = = = = =========补集计算结果========== ===================
直觉模糊集A的补集为:
[array([0.4, 0.2, 0.2, 0.1, 0.2, 0.3]), array([0.6, 0.7, 0.7, 0.8, 0.8, 0.6])]
直觉模糊集B的补集为:
[array([0.3, 0.3, 0.2, 0.2, 0.2, 0.2]), array([0.6, 0.6, 0.6, 0.7, 0.7, 0.7])]
= = = = = = = = = 交 集 计 算 结 果 = = = = = = = = = = =========交集计算结果========== ===================
直觉模糊集A和直觉模糊集B的交集为:
[[0.6 0.6 0.6 0.7 0.7 0.6]
[0.4 0.3 0.2 0.2 0.2 0.3]]
= = = = = = = = = 并 集 计 算 结 果 = = = = = = = = = = =========并集计算结果========== ===================
直觉模糊集A和直觉模糊集B的并集为:
[[0.6 0.7 0.7 0.8 0.8 0.7]
[0.4 0.3 0.2 0.2 0.2 0.3]]
= = = = = = = = = 求 和 计 算 结 果 = = = = = = = = = = =========求和计算结果========== ===================
直觉模糊集A和直觉模糊集B的和为:
[[0.84 0.88 0.88 0.94 0.94 0.88]
[0.12 0.06 0.04 0.02 0.04 0.06]]
= = = = = = = = = 并 积 计 算 结 果 = = = = = = = = = = =========并积计算结果========== ===================
直觉模糊集A和直觉模糊集B的积为:
[[0.36 0.42 0.42 0.56 0.56 0.42]
[0.58 0.44 0.36 0.28 0.36 0.44]]
= = = = = = = = = 数 乘 计 算 结 果 = = = = = = = = = = =========数乘计算结果========== ===================
直觉模糊集A的数乘(×0.6)结果为:
[[0.42292004 0.51440663 0.51440663 0.61926921 0.61926921 0.42292004]
[0.57707996 0.38073079 0.38073079 0.25118864 0.38073079 0.48559337]]
直觉模糊集B的数乘(×0.6)结果为:
[[0.42292004 0.42292004 0.42292004 0.51440663 0.51440663 0.51440663]
[0.48559337 0.48559337 0.38073079 0.38073079 0.38073079 0.38073079]]
= = = = = = = = = 乘 方 计 算 结 果 = = = = = = = = = = =========乘方计算结果========== ===================
直觉模糊集A的乘方(×0.6)结果为:
[[0.73602192 0.80734438 0.80734438 0.87468966 0.87468966 0.73602192]
[0.26397808 0.12531034 0.12531034 0.06125961 0.12531034 0.19265562]]
直觉模糊集B的乘方(×0.6)结果为:
[[0.73602192 0.73602192 0.73602192 0.80734438 0.80734438 0.80734438]
[0.19265562 0.19265562 0.12531034 0.12531034 0.12531034 0.12531034]]


2.3 直觉模糊集的相似度与距离

  相似度与距离是直觉模糊集理论中的一对对偶概念,用以反映两个直觉模糊集之间的接近程度和差异程度。
定义1.10
  设 s : F ( X ) × F ( X ) → [ 0 , 1 ] s: F(X) × F(X) \rightarrow [0,1] s:F(X)×F(X)[0,1]是一映射,对于任意直觉模糊集 A ~ ∈ F ( X ) \tilde{A} \in F(X) A~F(X) B ~ ∈ F ( X ) \tilde{B} \in F(X) B~F(X) C ~ ∈ F ( X ) \tilde{C} \in F(X) C~F(X),称 s ( A ~ , B ~ ) s(\tilde{A},\tilde{B}) s(A~,B~)为直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的相似度,如果它满足条件:

  (1)  0 ≤ s ( A ~ , B ~ ) ≤ 1 0 \leq s(\tilde{A},\tilde{B}) \leq 1 0s(A~,B~)1

  (2)  s ( A ~ , B ~ ) = 1 s(\tilde{A},\tilde{B})=1 s(A~,B~)=1当且仅当 A ~ = B ~ \tilde{A}=\tilde{B} A~=B~

  (3)  s ( A ~ , B ~ ) = s ( B ~ , A ~ ) s(\tilde{A},\tilde{B}) = s(\tilde{B},\tilde{A}) s(A~,B~)=s(B~,A~)

  (4)  如果 A ~ ⊆ B ~ ⊆ C ~ \tilde{A}\subseteq \tilde{B} \subseteq \tilde{C} A~B~C~,则 s ( A ~ , C ~ ) ≤ s ( A ~ , B ~ ) s(\tilde{A},\tilde{C}) \leq s(\tilde{A},\tilde{B}) s(A~,C~)s(A~,B~) s ( A ~ , C ~ ) ≤ s ( B ~ , C ~ ) s(\tilde{A},\tilde{C}) \leq s(\tilde{B},\tilde{C}) s(A~,C~)s(B~,C~)

  根据定义1.10,对于有限论域 X = x 1 , x 2 , . . . , x n X={x_1,x_2,...,x_n} X=x1,x2,...,xn上的两个直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~,可构造以下相似度测度。

  闵可夫斯基相似度:
s q ( A ~ , B ~ ) = 1 − [ 1 2 n ∑ j = 1 n [ ( μ A ~ ( x j ) − μ B ~ ( x j ) ) q + ( ν A ~ ( x j ) − ν B ~ ( x j ) ) q + ( π A ~ ( x j ) − π B ~ ( x j ) ) q ] ] 1 / q s_{q}(\tilde{A}, \tilde{B})=1-\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{q}\right]\right]^{1 / q} sq(A~,B~)=1[2n1j=1n[(μA~(xj)μB~(xj))q+(νA~(xj)νB~(xj))q+(πA~(xj)πB~(xj))q]]1/q

  汉明相似度:
s 1 ( A ~ , B ~ ) = 1 − [ 1 2 n ∑ j = 1 n [ ∣ μ A ~ ( x j ) − μ B ~ ( x j ) ∣ + ∣ ( ν A ~ ( x j ) − ν B ~ ( x j ) ∣ + ∣ ( π A ~ ( x j ) − π B ~ ( x j ) ∣ ] ] s_{1}(\tilde{A}, \tilde{B})=1-\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\mid\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)|+|\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right) \mid\right]\right]\right.\right. s1(A~,B~)=1[2n1j=1n[μA~(xj)μB~(xj)+(νA~(xj)νB~(xj)+(πA~(xj)πB~(xj)]]

  欧几里得相似度:
s 2 ( A ~ , B ~ ) = 1 − [ 1 2 n ∑ j = 1 n [ ( μ A ~ ( x j ) − μ B ~ ( x j ) ) 2 + ( ν λ ( x j ) − ν B ~ ( x j ) ) 2 + ( π A ~ ( x j ) − π B ~ ( x j ) ) 2 ] ] 1 / 2 s_{2}(\tilde{A}, \tilde{B})=1-\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\nu_{\lambda}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{2}\right]\right]^{1 / 2} s2(A~,B~)=1[2n1j=1n[(μA~(xj)μB~(xj))2+(νλ(xj)νB~(xj))2+(πA~(xj)πB~(xj))2]]1/2

  切比雪夫相似度:
s + ∞ ( A ~ , B ~ ) = 1 − max ⁡ 1 ⩽ j ⩽ n { ∣ μ A ~ ( x j ) − μ B ~ ( x j ) ∣ + ∣ ν A ~ ( x j ) − ν B ~ ( x j ) ∣ + ∣ π A ~ ( x j ) − π B ~ ( x j ) ∣ 2 n } s_{+\infty}(\tilde{A}, \tilde{B})=1-\max _{1 \leqslant j \leqslant n}\left\{\frac{\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right|}{2 n}\right\} s+(A~,B~)=11jnmax{2nμA~(xj)μB~(xj)+νA~(xj)νB~(xj)+πA~(xj)πB~(xj)}

  如果考虑权重因素,可分别得到直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的加权闵可夫斯基相似度 s ˉ q ( A ~ , B ~ ) \bar{s}_{q}(\tilde{A}, \tilde{B}) sˉq(A~,B~)、加权汉明相似度 s ˉ 1 ( A ~ , B ~ ) \bar{s}_{1}(\tilde{A}, \tilde{B}) sˉ1(A~,B~)、加权欧几里得相似度 s ˉ 2 ( A ~ , B ~ ) \bar{s}_{2}(\tilde{A}, \tilde{B}) sˉ2(A~,B~)、加权切比雪夫相似度 s ˉ + ∞ ( A ~ , B ~ ) \bar{s}_{+\infty}(\tilde{A}, \tilde{B}) sˉ+(A~,B~)等。

定义1.11
  设 d : F ( X ) × F ( X ) → [ 0 , 1 ] d: F(X) \times F(X) \rightarrow[0,1] d:F(X)×F(X)[0,1]是一映射,对于任意直觉模糊集 A ~ = F ( X ) \tilde{A}=F(X) A~=F(X) B ~ = F ( X ) \tilde{B}=F(X) B~=F(X) C ~ = F ( X ) \tilde{C}=F(X) C~=F(X),称 d ( A ~ , B ~ ) d(\tilde{A},\tilde{B}) d(A~,B~)为直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的距离,如果它满足条件:

  (1)  0 ⩽ d ( A ~ , B ~ ) ⩽ 1 0 \leqslant d(\tilde{A}, \tilde{B}) \leqslant 1 0d(A~,B~)1

  (2)  d ( A ~ , B ~ ) = 0 d(\tilde{A}, \tilde{B})=0 d(A~,B~)=0当且仅当 A ~ = B ~ \tilde{A} = \tilde{B} A~=B~

  (3)  d ( A ~ , B ~ ) = d ( B ~ , A ~ ) d(\tilde{A}, \tilde{B})=d(\tilde{B}, \tilde{A}) d(A~,B~)=d(B~,A~)

  (4)  如果 A ~ ⊆ B ~ ⊆ C ~ \tilde{A} \subseteq \tilde{B} \subseteq \tilde{C} A~B~C~,则 d ( A ~ , C ~ ) ⩾ d ( A ~ , B ~ ) d(\tilde{A}, \tilde{C}) \geqslant d(\tilde{A}, \tilde{B}) d(A~,C~)d(A~,B~) d ( A ~ , C ~ ) ⩾ d ( C ~ , B ~ ) d(\tilde{A}, \tilde{C}) \geqslant d(\tilde{C}, \tilde{B}) d(A~,C~)d(C~,B~)

定理1.4
  如果 s ( A ~ , B ~ ) s(\tilde{A},\tilde{B}) s(A~,B~)为直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的归一化距离,则 s ( A ~ , B ~ ) = 1 − d ( A ~ , B ~ ) s(\tilde{A},\tilde{B})=1-d(\tilde{A},\tilde{B}) s(A~,B~)=1d(A~,B~) A ~ \tilde{A} A~ B ~ \tilde{B} B~的相似度。

定理1.5
  根据直觉模糊集 A ~ \tilde{A} A~ B ~ \tilde{B} B~的相似度测度公式,对应地可以得到 A ~ \tilde{A} A~ B ~ \tilde{B} B~的归一化距离。

  闵可夫斯基距离:
d q ( A ~ , B ~ ) = [ 1 2 n ∑ j = 1 n [ ( μ A ~ ( x j ) − μ B ~ ( x j ) ) q + ( ν A ~ ( x j ) − ν B ~ ( x j ) ) q + ( π A ~ ( x j ) − π B ~ ( x j ) ) q ] ] 1 / q d_{q}(\tilde{A}, \tilde{B})=\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{q}\right]\right]^{1 / q} dq(A~,B~)=[2n1j=1n[(μA~(xj)μB~(xj))q+(νA~(xj)νB~(xj))q+(πA~(xj)πB~(xj))q]]1/q

  汉明距离:
d 1 ( A ~ , B ~ ) = [ 1 2 n ∑ j = 1 n [ ∣ μ A ~ ( x j ) − μ B ~ ( x j ) ∣ + ∣ ( ν A ~ ( x j ) − ν B ~ ( x j ) ∣ + ∣ ( π A ~ ( x j ) − π B ~ ( x j ) ∣ ] ] d_{1}(\tilde{A}, \tilde{B})=\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\mid\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)|+|\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right) \mid\right]\right]\right.\right. d1(A~,B~)=[2n1j=1n[μA~(xj)μB~(xj)+(νA~(xj)νB~(xj)+(πA~(xj)πB~(xj)]]

  欧几里得距离:
d 2 ( A ~ , B ~ ) = [ 1 2 n ∑ j = 1 n [ ( μ A ~ ( x j ) − μ B ~ ( x j ) ) 2 + ( ν A ~ ( x j ) − ν B ~ ( x j ) ) 2 + ( π A ~ ( x j ) − π B ~ ( x j ) ) 2 ] ] 1 / 2 d_{2}(\tilde{A}, \tilde{B})=\left[\frac{1}{2 n} \sum_{j=1}^{n}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{2}\right]\right]^{1 / 2} d2(A~,B~)=[2n1j=1n[(μA~(xj)μB~(xj))2+(νA~(xj)νB~(xj))2+(πA~(xj)πB~(xj))2]]1/2

  切比雪夫距离:
d + ∞ ( A ~ , B ~ ) = max ⁡ 1 ⩽ j ⩽ n { ∣ μ A ~ ( x j ) − μ B ~ ( x j ) ∣ + ∣ ν A ~ ( x j ) − ν B ~ ( x j ) ∣ + ∣ π A ~ ( x j ) − π B ~ ( x j ) ∣ 2 n } d_{+\infty}(\tilde{A}, \tilde{B})=\max _{1 \leqslant j \leqslant n}\left\{\frac{\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right|}{2 n}\right\} d+(A~,B~)=1jnmax{2nμA~(xj)μB~(xj)+νA~(xj)νB~(xj)+πA~(xj)πB~(xj)}

  加权闵可夫斯基距离:
d ˉ q ( A ~ , B ~ ) = [ 1 2 ∑ j = 1 n ω j [ ( μ A ~ ( x j ) − μ B ~ ( x j ) ) q + ( ν A ~ ( x j ) − ν B ~ ( x j ) ) q + ( π A ~ ( x j ) − π B ~ ( x j ) ) q ] ] 1 / q \bar{d}_{q}(\tilde{A}, \tilde{B})=\left[\frac{1}{2} \sum_{j=1}^{n} \omega_{j}\left[\left(\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{q}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{q}\right]\right]^{1 / q} dˉq(A~,B~)=[21j=1nωj[(μA~(xj)μB~(xj))q+(νA~(xj)νB~(xj))q+(πA~(xj)πB~(xj))q]]1/q

  加权汉明距离:
d ˉ 1 ( A ~ , B ~ ) = 1 2 ∑ j = 1 n ω j [ ∣ μ A ~ ( x j ) − μ B ~ ( x j ) ∣ + ∣ ( ν A ~ ( x j ) − ν B ~ ( x j ) ∣ + ∣ ( π A ~ ( x j ) − π B ~ ( x j ) ∣ ] \bar{d}_{1}(\tilde{A}, \tilde{B})=\frac{1}{2} \sum_{j=1}^{n} \omega_{j}\left[\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\mid\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)|+|\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right) \mid\right]\right.\right. dˉ1(A~,B~)=21j=1nωj[μA~(xj)μB~(xj)+(νA~(xj)νB~(xj)+(πA~(xj)πB~(xj)]

  加权欧几里得距离:
d ˉ 2 ( A ~ , B ~ ) = [ 1 2 ∑ j = 1 n ω j [ ( μ λ ( x j ) − μ B ~ ( x j ) ) 2 + ( ν A ~ ( x j ) − ν B ~ ( x j ) ) 2 + ( π A ~ ( x j ) − π B ~ ( x j ) ) 2 ] ] 1 / 2 \bar{d}_{2}(\tilde{A}, \tilde{B})=\left[\frac{1}{2} \sum_{j=1}^{n} \omega_{j}\left[\left(\mu_{\lambda}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\nu_{\tilde{A}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right)^{2}+\left(\pi_{\tilde{A}}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right)^{2}\right]\right]^{1 / 2} dˉ2(A~,B~)=[21j=1nωj[(μλ(xj)μB~(xj))2+(νA~(xj)νB~(xj))2+(πA~(xj)πB~(xj))2]]1/2

  加权切比雪夫距离:
d ˉ + ∞ ( A ~ , B ~ ) = max ⁡ 1 ⩽ j ⩽ n { ω j ( ∣ μ A ~ ( x j ) − μ B ~ ( x j ) ∣ + ∣ ν λ ~ ( x j ) − ν B ~ ( x j ) ∣ + ∣ π λ ( x j ) − π B ~ ( x j ) ∣ ) 2 } \bar{d}_{+\infty}(\tilde{A}, \tilde{B})=\max _{1 \leqslant j \leqslant n}\left\{\frac{\omega_{j}\left(\left|\mu_{\tilde{A}}\left(x_{j}\right)-\mu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\nu_{\tilde{\lambda}}\left(x_{j}\right)-\nu_{\tilde{B}}\left(x_{j}\right)\right|+\left|\pi_{\lambda}\left(x_{j}\right)-\pi_{\tilde{B}}\left(x_{j}\right)\right|\right)}{2}\right\} dˉ+(A~,B~)=1jnmax{2ωj(μA~(xj)μB~(xj)+νλ~(xj)νB~(xj)+πλ(xj)πB~(xj))}

  计算代码(python)如下:

## 相似度或距离计算
# 注意,第一行表示属于,第二行表示不属于
import numpy as np

A = [[0.6,0.7,0.7,0.8,0.8,0.6],[0.4,0.2,0.2,0.1,0.2,0.3]]
B = [[0.6,0.6,0.6,0.7,0.7,0.7],[0.3,0.3,0.2,0.2,0.2,0.2]]

A = np.array(A)
B = np.array(B)

def get_distance(arr_A,arr_B,dist_type,q_value=0):
    # 闵可夫斯基距离
    if dist_type == 'q':
        temp = 0
        for i in range(arr_A.shape[1]):
            temp += np.power(arr_A[0][i] - arr_B[0][i],q_value) + \
                    np.power(arr_A[1][i] - arr_B[1][i],q_value) + \
                    np.power(arr_B[0][i] + arr_B[1][i] - arr_A[0][i] - arr_A[1][i],q_value)
        return np.power(temp/(2*arr_A.shape[1]),1/q_value)
    # 汉明距离
    if dist_type == '1':
        temp = 0
        for i in range(arr_A.shape[1]):
            temp += np.abs(arr_A[0][i] - arr_B[0][i]) + \
                    np.abs(arr_A[1][i] - arr_B[1][i]) + \
                    np.abs(arr_B[0][i] + arr_B[1][i] - arr_A[0][i] - arr_A[1][i])
        return temp/(2*arr_A.shape[1])
    # 欧几里得距离
    if dist_type == '2':
        temp = 0
        for i in range(arr_A.shape[1]):
            temp += np.power(arr_A[0][i] - arr_B[0][i],2) + \
                    np.power(arr_A[1][i] - arr_B[1][i],2) + \
                    np.power(arr_B[0][i] + arr_B[1][i] - arr_A[0][i] - arr_A[1][i],2)
        return np.power(temp/(2*arr_A.shape[1]),1/2)
    # 切比雪夫距离
    if dist_type == 'infty':
        temp_max = 0
        for i in range(arr_A.shape[1]):
            value = np.abs(arr_A[0][i] - arr_B[0][i]) + \
                    np.abs(arr_A[1][i] - arr_B[1][i]) + \
                    np.abs(arr_B[0][i] + arr_B[1][i] - arr_A[0][i] - arr_A[1][i])
            if value/(2*arr_A.shape[1]) > temp_max:
                temp_max = value/(2*arr_A.shape[1])
        return temp_max
def get_similarity(arr_A,arr_B,sim_type,q_value=0):
    return 1 - get_distance(arr_A,arr_B,sim_type,q_value)

# 测试
print('=========闵可夫斯基距离与相似度==========')
d_q = get_distance(A,B,'q',q_value=5)
print("直觉模糊集A和直觉模糊集B之间的闵可夫斯基距离为:{}\t相似度为:{}".format(d_q,1-d_q))
print('\n')
print('=========汉明距离与相似度==========')
d_1 = get_distance(A,B,'1')
print("直觉模糊集A和直觉模糊集B之间的汉明距离为:{}\t相似度为:{}".format(d_1,1-d_1))
print('\n')
print('=========欧几里得距离与相似度==========')
d_2 = get_distance(A,B,'2')
print("直觉模糊集A和直觉模糊集B之间的欧几里得距离为:{}\t相似度为:{}".format(d_2,1-d_2))
print('\n')
print('=========切比雪夫距离与相似度==========')
d_infty = get_distance(A,B,'infty')
print("直觉模糊集A和直觉模糊集B之间的切比雪夫距离为:{}\t相似度为:{}".format(d_infty,1-d_infty))
print('\n')

  计算结果如下:

= = = = = = = = = 闵 可 夫 斯 基 距 离 与 相 似 度 = = = = = = = = = = =========闵可夫斯基距离与相似度========== ===================
直觉模糊集A和直觉模糊集B之间的闵可夫斯基距离为:6.464989264213939e-05 相似度为:0.9999353501073579
= = = = = = = = = 汉 明 距 离 与 相 似 度 = = = = = = = = = = ========= 汉明距离与相似度 ========== ===================
直觉模糊集A和直觉模糊集B之间的汉明距离为:0.10000000000000003 相似度为:0.8999999999999999
= = = = = = = = = 欧 几 里 得 距 离 与 相 似 度 = = = = = = = = = = =========欧几里得距离与相似度========== ===================
直觉模糊集A和直觉模糊集B之间的欧几里得距离为:0.10000000000000002 相似度为:0.9
= = = = = = = = = 切 比 雪 夫 距 离 与 相 似 度 = = = = = = = = = = =========切比雪夫距离与相似度========== ===================
直觉模糊集A和直觉模糊集B之间的切比雪夫距离为:0.016666666666666687 相似度为:0.9833333333333333

2.4 直觉模糊数及其运算

  为方便起见,称 α ~ = ( μ α ~ , ν α ~ ) \tilde{\alpha}=(\mu_{\tilde{\alpha}},\nu_{\tilde{\alpha}}) α~=(μα~,να~)为直觉模糊数,其中
μ α ~ ∈ [ 0 , 1 ] , ν α ~ ∈ [ 0 , 1 ] , μ α ~ + ν α ~ ≤ 1 \mu_{\tilde{\alpha}} \in [0,1], \nu_{\tilde{\alpha}} \in [0,1], \mu_{\tilde{\alpha}} + \nu_{\tilde{\alpha}} \leq 1 μα~[0,1],να~[0,1],μα~+να~1
显然, α ~ + = ( 1 , 0 ) {\tilde{\alpha}}^{+}=(1,0) α~+=(1,0)是最大的直觉模糊数,而 α ~ − = ( 1 , 0 ) {\tilde{\alpha}}^{-}=(1,0) α~=(1,0)是最小的直觉模糊数。

定义1.12
  设 α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1} = (\mu_{\tilde{\alpha}_{1}},\nu_{\tilde{\alpha}_{1}}) α~1=(μα~1,να~1) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2} = (\mu_{\tilde{\alpha}_{2}},\nu_{\tilde{\alpha}_{2}}) α~2=(μα~2,να~2)为两个直觉模糊数, s ( α ~ 1 ) = μ α ~ 1 − ν α ~ 1 s({\tilde{\alpha}}_{1})=\mu_{\tilde{\alpha}_{1}} - \nu_{\tilde{\alpha}_{1}} s(α~1)=μα~1να~1 s ( α ~ 2 ) = μ α ~ 2 − ν α ~ 2 s({\tilde{\alpha}}_{2})=\mu_{\tilde{\alpha}_{2}} - \nu_{\tilde{\alpha}_{2}} s(α~2)=μα~2να~2分别为 α ~ 1 {\tilde{\alpha}}_{1} α~1 α ~ 2 {\tilde{\alpha}}_{2} α~2的得分值, h ( α ~ 1 ) = μ α ~ 1 + ν α ~ 1 h({\tilde{\alpha}}_{1})=\mu_{\tilde{\alpha}_{1}} + \nu_{\tilde{\alpha}_{1}} h(α~1)=μα~1+να~1 h ( α ~ 2 ) = μ α ~ 2 + ν α ~ 2 h({\tilde{\alpha}}_{2})=\mu_{\tilde{\alpha}_{2}} + \nu_{\tilde{\alpha}_{2}} h(α~2)=μα~2+να~2分别为 α ~ 1 {\tilde{\alpha}}_{1} α~1 α ~ 2 {\tilde{\alpha}}_{2} α~2的精确度,则

  (1) 若 s ( α ~ 1 ) < s ( α ~ 2 ) s({\tilde{\alpha}}_{1}) \lt s({\tilde{\alpha}}_{2}) s(α~1)<s(α~2),则 α ~ 1 {\tilde{\alpha}}_{1} α~1小于 α ~ 2 {\tilde{\alpha}}_{2} α~2,即 α ~ 1 < α ~ 2 {\tilde{\alpha}}_{1} \lt {\tilde{\alpha}}_{2} α~1<α~2

  (2) 若 s ( α ~ 1 ) = s ( α ~ 2 ) s({\tilde{\alpha}}_{1}) = s({\tilde{\alpha}}_{2}) s(α~1)=s(α~2),则
    ① 若 h ( α ~ 1 ) = h ( α ~ 2 ) h({\tilde{\alpha}}_{1}) = h({\tilde{\alpha}}_{2}) h(α~1)=h(α~2),则 α ~ 1 = α ~ 2 {\tilde{\alpha}}_{1} = {\tilde{\alpha}}_{2} α~1=α~2
    ② 若 h ( α ~ 1 ) ≤ h ( α ~ 2 ) h({\tilde{\alpha}}_{1}) \le h({\tilde{\alpha}}_{2}) h(α~1)h(α~2),则 α ~ 1 ≤ α ~ 2 {\tilde{\alpha}}_{1} \le {\tilde{\alpha}}_{2} α~1α~2
    ③ 若 h ( α ~ 1 ) > h ( α ~ 2 ) h({\tilde{\alpha}}_{1}) \gt h({\tilde{\alpha}}_{2}) h(α~1)>h(α~2),则 α ~ 1 > α ~ 2 {\tilde{\alpha}}_{1} \gt {\tilde{\alpha}}_{2} α~1>α~2

定理1.6
  设 α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1}=(\mu_{{\tilde{\alpha}}_{1}},\nu_{{\tilde{\alpha}}_{1}}) α~1=(μα~1,να~1) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2}=(\mu_{{\tilde{\alpha}}_{2}},\nu_{{\tilde{\alpha}}_{2}}) α~2=(μα~2,να~2)为两个直觉模糊数,则
α ~ 1 ≤ α ~ 2 ⇐ μ α ~ 1 ≤ μ α ~ 2 且 ν α ~ 1 ≥ ν α ~ 2 {\tilde{\alpha}}_{1} \leq {\tilde{\alpha}}_{2} \Leftarrow \mu_{{\tilde{\alpha}}_{1}} \leq \mu_{{\tilde{\alpha}}_{2}}且\nu_{{\tilde{\alpha}}_{1}} \geq \nu_{{\tilde{\alpha}}_{2}} α~1α~2μα~1μα~2να~1να~2
定义1.13
  设 α ~ = ( μ α ~ , ν α ~ ) {\tilde{\alpha}}=(\mu_{{\tilde{\alpha}}},\nu_{{\tilde{\alpha}}}) α~=(μα~,να~) α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1}=(\mu_{{\tilde{\alpha}}_{1}},\nu_{{\tilde{\alpha}}_{1}}) α~1=(μα~1,να~1) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2}=(\mu_{{\tilde{\alpha}}_{2}},\nu_{{\tilde{\alpha}}_{2}}) α~2=(μα~2,να~2)为直觉模糊数,则

  (1)  α ~ ‾ = ( ν α ~ , μ α ~ ) \overline{\tilde{\alpha}}=\left(\nu_{\tilde{\alpha}}, \mu_{\tilde{\alpha}}\right) α~=(να~,μα~)

  (2)  α ~ 1 ∩ α ~ 2 = ( min ⁡ { μ α ~ 1 , μ α ~ 2 } , max ⁡ { ν α ~ 1 , ν α ~ 2 , } ) \tilde{\alpha}_{1} \cap \tilde{\alpha}_{2} = \left({\min \left\{\mu_{\tilde{\alpha}_{1}}, \mu_{\tilde{\alpha}_{2}}\right\}}, {\max \left\{\nu_{\tilde{\alpha}_{1}}, \nu_{\tilde{\alpha}_{2}},\right\}}\right) α~1α~2=(min{μα~1,μα~2},max{να~1,να~2,})

  (3)  α ~ 1 ∪ α ~ 2 = ( max ⁡ { μ α ~ 1 , μ α ~ 2 } , min ⁡ { ν α ~ 1 , ν α ~ 2 } ) \tilde{\alpha}_{1} \cup \tilde{\alpha}_{2}=\left(\max \left\{\mu_{\tilde{\alpha}_{1}}, \mu_{\tilde{\alpha}_{2}}\right\}, \min \left\{\nu_{\tilde{\alpha}_{1}}, \nu_{\tilde{\alpha}_{2}}\right\}\right) α~1α~2=(max{μα~1,μα~2},min{να~1,να~2})

  (4)  α ~ 1 ⊕ α ~ 2 = ( μ α ~ 1 + μ α ~ 2 − μ α ~ 1 μ α ~ 2 , ν α ~ 1 ν α ~ 2 ) \color{red}{\tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2}=\left(\mu_{\tilde{\alpha}_{1}}+\mu_{\tilde{\alpha}_{2}}-\mu_{\tilde{\alpha}_{1}} \mu_{\tilde{\alpha}_{2}}, \nu_{\tilde{\alpha}_{1}} \nu_{\tilde{\alpha}_{2}}\right)} α~1α~2=(μα~1+μα~2μα~1μα~2,να~1να~2)

  (5)  α ~ 1 ⊗ α ~ 2 = ( μ α ~ 1 μ α ~ 2 , ν α ~ 1 + ν α ~ 2 − ν α ~ 1 ν α ~ 2 ) \color{red}{\tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2}=\left(\mu_{\tilde{\alpha}_{1}} \mu_{\tilde{\alpha}_{2}}, \nu_{\tilde{\alpha}_{1}}+\nu_{\tilde{\alpha}_{2}}-\nu_{\tilde{\alpha}_{1}} \nu_{\tilde{\alpha}_{2}}\right)} α~1α~2=(μα~1μα~2,να~1+να~2να~1να~2)

  (6)  λ α ~ = ( 1 − ( 1 − μ α ~ ) ) λ , v α ~ λ ) , λ ≥ 0 \color{red}{\left.\lambda \tilde{\alpha}=\left(1-\left(1-\mu_{\tilde{\alpha}}\right)\right)^{\lambda}, v_{\tilde{\alpha}}^{\lambda}\right), \lambda \geq 0} λα~=(1(1μα~))λ,vα~λ),λ0

  (7)  α ~ λ = ( μ α ~ λ , 1 − ( 1 − ν α ~ ) λ ) , λ ≥ 0 \color{red}{\tilde{\alpha}^{\lambda}=\left(\mu_{\tilde{\alpha}}^{\lambda}, 1-\left(1-\nu_{\tilde{\alpha}}\right)^{\lambda}\right), \lambda \geq 0} α~λ=(μα~λ,1(1να~)λ),λ0

  根据直觉模糊数的定义,可以证明以下两个定理。

定理1.7
  设 α ~ = ( μ α ~ , ν α ~ ) {\tilde{\alpha}}=(\mu_{{\tilde{\alpha}}},\nu_{{\tilde{\alpha}}}) α~=(μα~,να~) α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1}=(\mu_{{\tilde{\alpha}}_{1}},\nu_{{\tilde{\alpha}}_{1}}) α~1=(μα~1,να~1) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2}=(\mu_{{\tilde{\alpha}}_{2}},\nu_{{\tilde{\alpha}}_{2}}) α~2=(μα~2,να~2)为直觉模糊数,则 α ~ 1 ⊕ α ~ 2 \tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2} α~1α~2 α ~ 1 ⊗ α ~ 2 \tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2} α~1α~2 λ α ~ \lambda \tilde{\alpha} λα~ α ~ λ ( λ > 0 ) \tilde{\alpha}^{\lambda}(\lambda>0) α~λ(λ>0)均为直觉模糊数。

定理1.8
  设 α ~ = ( μ α ~ , ν α ~ ) {\tilde{\alpha}}=(\mu_{{\tilde{\alpha}}},\nu_{{\tilde{\alpha}}}) α~=(μα~,να~) α ~ 1 = ( μ α ~ 1 , ν α ~ 1 ) {\tilde{\alpha}}_{1}=(\mu_{{\tilde{\alpha}}_{1}},\nu_{{\tilde{\alpha}}_{1}}) α~1=(μα~1,να~1) α ~ 2 = ( μ α ~ 2 , ν α ~ 2 ) {\tilde{\alpha}}_{2}=(\mu_{{\tilde{\alpha}}_{2}},\nu_{{\tilde{\alpha}}_{2}}) α~2=(μα~2,να~2)为直觉模糊数, λ , λ 1 , λ 2 > 0 \lambda, \lambda_{1}, \lambda_{2}>0 λ,λ1,λ2>0,则

  (1)  α ~ 1 ⊕ α ~ 2 = α ~ 2 ⊕ α ~ 1 \tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2}=\tilde{\alpha}_{2} \oplus \tilde{\alpha}_{1} α~1α~2=α~2α~1

  (2)  α ~ 1 ⊗ α ~ 2 = α ~ 2 ⊗ α ~ 1 \tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2}=\tilde{\alpha}_{2} \otimes \tilde{\alpha}_{1} α~1α~2=α~2α~1

  (3)  λ ( α ~ 1 ⊕ α ~ 2 ) = λ α ~ 1 + λ α ~ 2 \lambda\left(\tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2}\right)=\lambda \tilde{\alpha}_{1}+\lambda \tilde{\alpha}_{2} λ(α~1α~2)=λα~1+λα~2

  (4)  ( α ~ 1 ⊗ α ~ 2 ) λ = α ~ 1 λ ⊗ α ~ 2 λ \left(\tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2}\right)^{\lambda}=\tilde{\alpha}_{1}^{\lambda} \otimes \tilde{\alpha}_{2}^{\lambda} (α~1α~2)λ=α~1λα~2λ

  (5)  λ 1 α ~ ⊕ λ 2 α ~ = ( λ 1 + λ 2 ) α ~ \lambda_{1} \tilde{\alpha} \oplus \lambda_{2} \tilde{\alpha}=\left(\lambda_{1}+\lambda_{2}\right) \tilde{\alpha} λ1α~λ2α~=(λ1+λ2)α~

  (6)  α ~ λ 1 ⊗ α ~ λ 2 = α ~ ( λ 1 + λ 2 ) \tilde{\alpha}^{\lambda_{1}} \otimes \tilde{\alpha}^{\lambda_{2}}=\tilde{\alpha}^{\left(\lambda_{1}+\lambda_{2}\right)} α~λ1α~λ2=α~(λ1+λ2)


特别说明:本专栏主要参考郭子雪等所著《直觉模糊多属性决策理论方法及应用研究》书籍,部分代码计算结果与书中有所出入,请仔细甄别!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值