Part IV.S3. 基于模糊熵的区间直觉模糊多属性决策方法

本文介绍了区间直觉模糊熵的度量方法,通过模糊熵计算多属性决策问题中属性的权重,并详细阐述了在属性权重未知时如何基于理想解进行决策。关键步骤包括构建决策矩阵、确定理想解、计算距离和贴近度,最终用于方案排序。
摘要由CSDN通过智能技术生成

3.1 基于模糊熵的区间直觉模糊多属性TOPSIS方法

3.1.1 区间直觉模糊熵的度量

  定义3.1 设 A ~ = { ⟨ x i , [ μ A L ( x 1 ) , μ A U ( x 1 ) ] , [ ν A L ( x 1 ) , ν A U ( x 1 ) ] ⟩ ∣ x 1 ∈ X , i = 1 , 2 , ⋯   , n } \tilde{A} = \left\{ \left\langle x_{i},\left[\mu_{AL}\left(x_{1}\right),\mu_{AU}\left(x_{1}\right)\right],\left[\nu_{AL}\left(x_{1}\right),\nu_{AU}\left(x_{1}\right)\right] \right\rangle | x_{1} \in X, i=1,2,\cdots,n\right\} A~={xi,[μAL(x1),μAU(x1)],[νAL(x1),νAU(x1)]x1X,i=1,2,,n}为论域 X X X上的直觉模糊数,则

E ( A ~ ) = 1 n ∑ i = 1 n cos ⁡ π ( ∣ μ A U 2 ( x i ) − ν A L 2 ( x i ) ∣ + ∣ μ A U 2 ( x i ) − ν A U 2 ( x i ) ∣ ) 4 (3.1) \color{red} { E\left(\tilde{A}\right) = \frac{1}{n}\sum_{i=1}^{n}\cos\frac{\pi\left( \left|\mu_{AU}^2\left(x_{i}\right) - \nu_{AL}^2\left(x_{i}\right)\right|+ \left| \mu_{AU}^2\left(x_{i}\right) - \nu_{AU}^2\left(x_{i}\right)\right| \right)}{4} \tag{3.1} } E(A~)=n1i=1ncos4π(μAU2(xi)νAL2(xi)+μAU2(xi)νAU2(xi))(3.1)

  是一个区间直觉模糊数,也可改写为:

E ( A ~ ) = 1 n ∑ i = 1 n cos ⁡ π ( ∣ ( μ A U ( x i ) − ν A L ( x i ) ) ( 1 − π A L ( x i ) ) ∣ + ∣ ( μ A U ( x i ) − ν A U ( x i ) ) ( 1 − π A U ( x i ) ) ∣ ) 4 (3.2) \color{red} { E\left(\tilde{A}\right) = \frac{1}{n}\sum_{i=1}^{n}\cos \frac {\pi\left(\left|\left(\mu_{AU}\left(x_{i}\right) - \nu_{AL}\left(x_{i}\right)\right)\left(1-\pi_{AL}\left(x_{i}\right)\right)\right|+ \left|\left(\mu_{AU}\left(x_{i}\right) - \nu_{AU}\left(x_{i}\right)\right)\left(1-\pi_{AU}\left(x_{i}\right)\right)\right| \right)} {4} \tag{3.2} } E(A~)=n1i=1ncos4π((μAU(xi)νAL(xi))(1πAL(xi))+(μAU(xi)νAU(xi))(1πAU(xi)))(3.2)

3.1.2 基于模糊熵的区间直觉模糊数多属性决策TOPSIS方法步骤

  设某多属性决策问题有 m m m个方案 Y i ( i = 1 , 2 , ⋯   , m ) Y_{i}\left(i=1,2,\cdots,m\right) Yi(i=1,2,,m)组成方案集 Y = { Y 1 , Y 2 , ⋯   , Y m } Y=\{Y_1,Y_2,\cdots,Y_m\} Y={Y1,Y2,,Ym},评价每个方案的属性(或指标)为 G j ( j = 1 , 2 , ⋯   , n ) G_{j}\left(j=1,2,\cdots,n\right) Gj(j=1,2,,n),记属性集为 G = { G 1 , G 2 , ⋯   , G n } G=\{G_1,G_2,\cdots,G_n\} G={G1,G2,,Gn}。如果 F ~ i j = ⟨ [ μ i j L , μ i j U ] , [ ν i j L , ν i j U ] ⟩ ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) \tilde{F}_{ij} = \left\langle \left[\mu_{ijL},\mu_{ijU}\right],\left[\nu_{ijL},\nu_{ijU}\right] \right\rangle\left(i=1,2,\cdots,m;j=1,2,\cdots,n\right) F~ij=[μijL,μijU],[νijL,νijU](i=1,2,,m;j=1,2,,n)为区间直觉模糊集,表示方案满足属性 G j ∈ G G_{j} \in G GjG和不满足属性 G j ∈ G G_{j} \in G GjG的程度,且 0 ≤ μ i j + ν i j ≤ 1 0 \leq \mu_{ij} + \nu_{ij} \leq 1 0μij+νij1,矩阵 F ~ i j = ( ⟨ [ μ i j L , μ i j U ] , [ ν i j L , ν i j U ] ⟩ ) m × n \tilde{F}_{ij} = \left(\left\langle \left[\mu_{ijL},\mu_{ijU}\right],\left[\nu_{ijL},\nu_{ijU}\right] \right\rangle\right)_{m×n} F~ij=([μijL,μijU],[νijL,νijU])m×n为该多属性决策问题的区间直觉模糊决策矩阵,则基于模糊熵的区间直觉模糊多属性决策TOPSIS方法步骤可归纳如下。

  S.1 确定多属性决策问题的方案集 Y = { Y 1 , Y 2 , ⋯   , Y m } Y=\{Y_1,Y_2,\cdots,Y_m\} Y={Y1,Y2,,Ym}和属性集 G = { G 1 , G 2 , ⋯   , G n } G=\{G_1,G_2,\cdots,G_n\} G={G1,G2,,Gn},获取多属性决问题中方案 Y i ∈ Y Y_{i} \in Y YiY关于属性 G j ∈ G G_{j} \in G GjG的区间直觉模糊特征信息,构建区间直觉模糊决策矩阵 F F F

  S.2 根据区间直觉模糊多属性决策矩阵F,利用式 ( 3.2 ) (3.2) (3.2)计算属性 G j ( j = 1 , 2 , ⋯   , n ) G_{j}\left(j=1,2,\cdots,n\right) Gj(j=1,2,,n)的模糊熵。

E j = 1 m ∑ i = 1 m cos ⁡ π ( ∣ ( μ i j L − ν i j L ) ( 1 − π i j L ) ∣ + ∣ ( μ i j U − ν i j U ) ( 1 − π i j U ) ∣ ) 4 , j = 1 , 2 , ⋯   , n (3.3) \color{red} { E_{j} = \frac{1}{m}\sum_{i=1}^{m}\cos \frac {\pi\left( \left|\left(\mu_{ijL} - \nu_{ijL}\right)\left(1-\pi_{ijL}\right)\right| + \left|\left(\mu_{ijU} - \nu_{ijU}\right)\left(1-\pi_{ijU}\right)\right|\right)} {4},j=1,2,\cdots,n \tag{3.3} } Ej=m1i=1mcos4π((μijLνijL)(1πijL)+(μijUνijU)(1πijU)),j=1,2,,n(3.3)

  S.3 利用属性 G j ( j = 1 , 2 , ⋯   , n ) G_{j}\left(j=1,2,\cdots,n\right) Gj(j=1,2,,n)的模糊熵 E j E_{j} Ej,计算属性 G j ( j = 1 , 2 , ⋯   , n ) G_{j}\left(j=1,2,\cdots,n\right) Gj(j=1,2,,n)
权重 ω j \omega_{j} ωj

ω j = 1 − E j n − ∑ j = 1 n E j , j = 1 , 2 , ⋯   , n (3.4) \omega_{j} = \frac {1- E_{j}} {n - \sum_{j=1}^{n}E_{j}},j=1,2,\cdots,n \tag{3.4} ωj=nj=1nEj1Ej,j=1,2,,n(3.4)

  S.4 根据区间直觉模糊多属性决策矩阵 F F F确定多属性解决问题的正理想解 Y + Y^{+} Y+和负理想解 Y − Y^{-} Y:

Y + = ( ⟨ [ μ 1 L + , μ 1 U + ] , [ ν 1 L + , ν 1 U + ] ⟩ , ⟨ [ μ 2 L + , μ 2 U + ] , [ ν 2 L + , ν 2 U + ] ⟩ , ⋯   , ⟨ [ μ n L + , μ n U + ] , [ ν n L + , ν n U + ] ⟩ ) = ( ⟨ [ max ⁡ i μ 1 L , max ⁡ i μ 1 U ] , [ min ⁡ i ν 1 L , min ⁡ i ν 1 U ] ⟩ , ⟨ [ max ⁡ i μ 2 L , max ⁡ i μ 2 U ] , [ min ⁡ i ν 2 L , min ⁡ i ν 2 U ] ⟩ , ⋯   , ⟨ [ max ⁡ i μ n L , max ⁡ i μ n U ] , [ min ⁡ i ν n L , min ⁡ i ν n U ] ⟩ ) (3.5) \color{red} { \begin{aligned} Y^{+} &= \left( \left\langle \left[\mu_{1L}^{+},\mu_{1U}^{+}\right],\left[\nu_{1L}^{+},\nu_{1U}^{+}\right] \right\rangle, \left\langle \left[\mu_{2L}^{+},\mu_{2U}^{+}\right],\left[\nu_{2L}^{+},\nu_{2U}^{+}\right] \right\rangle, \cdots, \left\langle \left[\mu_{nL}^{+},\mu_{nU}^{+}\right],\left[\nu_{nL}^{+},\nu_{nU}^{+}\right] \right\rangle \right) \\ &= \left( \left\langle \left[\max_{i}\mu_{1L},\max_{i}\mu_{1U}\right],\left[\min_{i}\nu_{1L},\min_{i}\nu_{1U}\right] \right\rangle, \left\langle \left[\max_{i}\mu_{2L},\max_{i}\mu_{2U}\right],\left[\min_{i}\nu_{2L},\min_{i}\nu_{2U}\right] \right\rangle, \left. \right. \cdots, \left\langle \left[\max_{i}\mu_{nL},\max_{i}\mu_{nU}\right],\left[\min_{i}\nu_{nL},\min_{i}\nu_{nU}\right] \right\rangle \right) \end{aligned} \tag{3.5} } Y+=([μ1L+,μ1U+],[ν1L+,ν1U+],[μ2L+,μ2U+],[ν2L+,ν2U+],,[μnL+,μnU+],[νnL+,νnU+])=([imaxμ1L,imaxμ1U],[iminν1L,iminν1U],[imaxμ2L,imaxμ2U],[iminν2L,iminν2U],,[imaxμnL,imaxμnU],[iminνnL,iminνnU])(3.5)

Y − = ( ⟨ [ μ 1 L − , μ 1 U − ] , [ ν 1 L − , ν 1 U − ] ⟩ , ⟨ [ μ 2 L − , μ 2 U − ] , [ ν 2 L − , ν 2 U − ] ⟩ , ⋯   , ⟨ [ μ n L − , μ n U − ] , [ ν n L − , ν n U − ] ⟩ ) = ( ⟨ [ min ⁡ i μ 1 L , min ⁡ i μ 1 U ] , [ max ⁡ i ν 1 L , max ⁡ i ν 1 U ] ⟩ , ⟨ [ min ⁡ i μ 2 L , min ⁡ i μ 2 U ] , [ max ⁡ i ν 2 L , max ⁡ i ν 2 U ] ⟩ , ⋯   , ⟨ [ min ⁡ i μ n L , min ⁡ i μ n U ] , [ max ⁡ i ν n L , max ⁡ i ν n U ] ⟩ ) (3.6) \color{red} { \begin{aligned} Y^{-} &= \left( \left\langle \left[\mu_{1L}^{-},\mu_{1U}^{-}\right],\left[\nu_{1L}^{-},\nu_{1U}^{-}\right] \right\rangle, \left\langle \left[\mu_{2L}^{-},\mu_{2U}^{-}\right],\left[\nu_{2L}^{-},\nu_{2U}^{-}\right] \right\rangle, \cdots, \left\langle \left[\mu_{nL}^{-},\mu_{nU}^{-}\right],\left[\nu_{nL}^{-},\nu_{nU}^{-}\right] \right\rangle \right) \\ &= \left( \left\langle \left[\min_{i}\mu_{1L},\min_{i}\mu_{1U}\right],\left[\max_{i}\nu_{1L},\max_{i}\nu_{1U}\right] \right\rangle, \left\langle \left[\min_{i}\mu_{2L},\min_{i}\mu_{2U}\right],\left[\max_{i}\nu_{2L},\max_{i}\nu_{2U}\right] \right\rangle,\left. \right. \cdots, \left\langle \left[\min_{i}\mu_{nL},\min_{i}\mu_{nU}\right],\left[\max_{i}\nu_{nL},\max_{i}\nu_{nU}\right] \right\rangle \right) \tag{3.6} \end{aligned} } Y=([μ1L,μ1U],[ν1L,ν1U],[μ2L,μ2U],[ν2L,ν2U],,[μnL,μnU],[νnL,νnU])=([iminμ1L,iminμ1U],[imaxν1L,imaxν1U],[iminμ2L,iminμ2U],[imaxν2L,imaxν2U],,[iminμnL,iminμnU],[imaxνnL,imaxνnU])(3.6)

  S.5 计算各方案 Y i ( i = 1 , 2 , ⋯   , m ) Y_{i}\left(i=1,2,\cdots,m\right) Yi(i=1,2,,m)到正理想解 Y + Y^{+} Y+和负理想解 Y − Y^{-} Y的距离 d + d^{+} d+ d − d^{-} d:

d i + = 1 4 ∑ j = 1 n ω j [ ∣ μ i j L − μ j L + ∣ + ∣ μ i j U − μ j U + ∣ + ∣ ν i j L − ν j L + ∣ + ∣ ν i j U − ν j U + ∣ ] (3.7) \color{red} { d_{i}^{+} = \frac{1}{4} \sum_{j=1}^{n}\omega_{j}\left[ \left|\mu_{ijL}-\mu_{jL}^{+}\right| + \left|\mu_{ijU}-\mu_{jU}^{+}\right| + \left|\nu_{ijL}-\nu_{jL}^{+}\right| + \left|\nu_{ijU}-\nu_{jU}^{+}\right| \right] \tag{3.7} } di+=41j=1nωj[μijLμjL++μijUμjU++νijLνjL++νijUνjU+](3.7)

d i − = 1 4 ∑ j = 1 n ω j [ ∣ μ i j L − μ j L − ∣ + ∣ μ i j U − μ j U − ∣ + ∣ ν i j L − ν j L − ∣ + ∣ ν i j U − ν j U − ∣ ] (3.8) \color{red} { d_{i}^{-} = \frac{1}{4} \sum_{j=1}^{n}\omega_{j}\left[ \left|\mu_{ijL}-\mu_{jL}^{-}\right| + \left|\mu_{ijU}-\mu_{jU}^{-}\right| + \left|\nu_{ijL}-\nu_{jL}^{-}\right| + \left|\nu_{ijU}-\nu_{jU}^{-}\right| \right] \tag{3.8} } di=41j=1nωj[μijLμjL+μijUμjU+νijLνjL+νijUνjU](3.8)

  S.6 计算方案 Y i ( i = 1 , 2 , ⋯   , m ) Y_{i}\left(i=1,2,\cdots,m\right) Yi(i=1,2,,m)的贴近度 c i c_{i} ci:

c i = d i − d i − + d i + , i = 1 , 2 , ⋯   , m (3.9) c_{i} = \frac {d_{i}^{-}} {d_{i}^{-}+d_{i}^{+}},i=1,2,\cdots,m \tag{3.9} ci=di+di+di,i=1,2,,m(3.9)

  并利用贴近度的大小对方案 Y i ( i = 1 , 2 , ⋯   , m ) Y_{i}\left(i=1,2,\cdots,m\right) Yi(i=1,2,,m)进行排序, c i c_{i} ci越大表明方案 Y i Y_{i} Yi离正理想解越近、离负理想解越远,方案越优。


3.2 属性权重未知情形下基于理想解的区间直觉模糊多属性决策

3.2.1 属性权重的确定方法

  属性权重 完 全 未 知 \color{blue}{完全未知} 情况下的单目标最优化模型:

{ min ⁡ d + ( ω ) − d − ( ω ) = 1 4 ∑ j = 1 n ∑ i = 1 m ω j [ ∣ μ i j L − μ j L + ∣ + ∣ μ i j U − μ j U + ∣ + ∣ ν i j L − ν j L + ∣ + ∣ ν i j U − ν j U + ∣ − ∣ μ i j L − μ j L − ∣ − ∣ μ i j U − μ j U − ∣ − ∣ ν i j L − ν j L − ∣ − ∣ ν i j U − ν j U − ∣ ] s.t. ω ‾ j ⩽ ω j ⩽ ω ‾ , ∑ j = 1 n ω j = 1 , ω j ⩾ 0 , j = 1 , 2 , ⋯   , n (3.10) \color{blue} { \left\{ \begin{aligned} &\min d^{+}(\omega)-d^{-}(\omega)=\frac{1}{4} \sum_{j=1}^{n} \sum_{i=1}^{m} \omega_{j} \left[ \left|\mu_{ijL}-\mu_{jL}^{+}\right| + \left|\mu_{ijU}-\mu_{jU}^{+}\right| + \left|\nu_{ijL}-\nu_{jL}^{+}\right| + \left|\nu_{ijU}-\nu_{jU}^{+}\right| \left. \right. - \left|\mu_{ijL}-\mu_{jL}^{-}\right| - \left|\mu_{ijU}-\mu_{jU}^{-}\right| - \left|\nu_{ijL}-\nu_{jL}^{-}\right| - \left|\nu_{ijU}-\nu_{jU}^{-}\right| \right] \\ &\text {s.t.} \underline{\omega}_{j} \leqslant \omega_{j} \leqslant \overline{\omega}, \sum_{j=1}^{n} \omega_{j}=1, \omega_{j} \geqslant 0, j=1,2, \cdots, n \end{aligned} \right. \tag{3.10} } mind+(ω)d(ω)=41j=1ni=1mωj[μijLμjL++μijUμjU++νijLνjL++νijUνjU+μijLμjLμijUμjUνijLνjLνijUνjU]s.t.ωjωjω,j=1nωj=1,ωj0,j=1,2,,n(3.10)

  属性权重 不 完 全 未 知 \color{blue}{不完全未知} 情况下的最优化模型:

{ min ⁡ d + ( ω ) = 1 4 ∑ j = 1 n ∑ i = 1 m ω j [ ∣ μ i j L − μ j L + ∣ + ∣ μ i j U − μ j U + ∣ + ∣ ν i j L − ν j L + ∣ + ∣ ν i j U − ν j U + ∣ ] s.t. ∑ j = 1 n ω j = 1 , ω j ≥ 0 , j = 1 , 2 , ⋯   , n (3.11) \color{blue} { \left\{ \begin{aligned} &\min d^{+}(\omega)=\frac{1}{4} \sum_{j=1}^{n} \sum_{i=1}^{m} \omega_{j}\left[\left|\mu_{ijL}-\mu_{jL}^{+}\right| + \left|\mu_{ijU}-\mu_{jU}^{+}\right| + \left|\nu_{ijL}-\nu_{jL}^{+}\right| + \left|\nu_{ijU}-\nu_{jU}^{+}\right|\right] \\ &\text {s.t.} \sum_{j=1}^{n} \omega_{j}=1, \omega_{j} \geq 0, j=1,2, \cdots, n \end{aligned} \right. \tag{3.11} } mind+(ω)=41j=1ni=1mωj[μijLμjL++μijUμjU++νijLνjL++νijUνjU+]s.t.j=1nωj=1,ωj0,j=1,2,,n(3.11)

{ max ⁡ d − ( ω ) = 1 4 ∑ j = 1 n ∑ i = 1 m ω j [ ∣ μ i j L − μ j L − ∣ + ∣ μ i j U − μ j U − ∣ + ∣ ν i j L − ν j L − ∣ + ∣ ν i j U − ν j U − ∣ ] s.t. ∑ j = 1 n ω j = 1 , ω j ≥ 0 , j = 1 , 2 , ⋯   , n (3.12) \color{blue} { \left\{ \begin{aligned} &\max d^{-}(\omega)=\frac{1}{4} \sum_{j=1}^{n} \sum_{i=1}^{m} \omega_{j}\left[\left|\mu_{ijL}-\mu_{jL}^{-}\right| + \left|\mu_{ijU}-\mu_{jU}^{-}\right| + \left|\nu_{ijL}-\nu_{jL}^{-}\right| + \left|\nu_{ijU}-\nu_{jU}^{-}\right|\right] \\ &\text {s.t.} \sum_{j=1}^{n} \omega_{j}=1, \omega_{j} \geq 0, j=1,2, \cdots, n \end{aligned} \right. \tag{3.12} } maxd(ω)=41j=1ni=1mωj[μijLμjL+μijUμjU+νijLνjL+νijUνjU]s.t.j=1nωj=1,ωj0,j=1,2,,n(3.12)

  权重计算公式:

ω j = ∑ i = 1 m [ ∣ μ i j L − μ j L + ∣ + ∣ μ i j U − μ j U + ∣ + ∣ ν i j L − ν j L + ∣ + ∣ ν i j U − ν j U + ∣ ] ∑ j = 1 n ∑ i = 1 m [ ∣ μ i j L − μ j L + ∣ + ∣ μ i j U − μ j U + ∣ + ∣ ν i j L − ν j L + ∣ + ∣ ν i j U − ν j U + ∣ ] , j = 1 , 2 , ⋯   , n (3.13) \color{red} { \omega_{j} = \frac {\sum_{i=1}^{m} \left[ \left|\mu_{ijL}-\mu_{jL}^{+}\right| + \left|\mu_{ijU}-\mu_{jU}^{+}\right| + \left|\nu_{ijL}-\nu_{jL}^{+}\right| + \left|\nu_{ijU}-\nu_{jU}^{+}\right| \right]} {\sum_{j=1}^{n} \sum_{i=1}^{m} \left[ \left|\mu_{ijL}-\mu_{jL}^{+}\right| + \left|\mu_{ijU}-\mu_{jU}^{+}\right| + \left|\nu_{ijL}-\nu_{jL}^{+}\right| + \left|\nu_{ijU}-\nu_{jU}^{+}\right| \right]},j=1,2,\cdots,n \tag{3.13} } ωj=j=1ni=1m[μijLμjL++μijUμjU++νijLνjL++νijUνjU+]i=1m[μijLμjL++μijUμjU++νijLνjL++νijUνjU+],j=1,2,,n(3.13)

ω j = ∑ i = 1 m [ ∣ μ i j L − μ j L − ∣ + ∣ μ i j U − μ j U − ∣ + ∣ ν i j L − ν j L − ∣ + ∣ ν i j U − ν j U − ∣ ] ∑ j = 1 n ∑ i = 1 m [ ∣ μ i j L − μ j L − ∣ + ∣ μ i j U − μ j U − ∣ + ∣ ν i j L − ν j L − ∣ + ∣ ν i j U − ν j U − ∣ ] , j = 1 , 2 , ⋯   , n (3.14) \color{red} { \omega_{j} = \frac {\sum_{i=1}^{m} \left[ \left|\mu_{ijL}-\mu_{jL}^{-}\right| + \left|\mu_{ijU}-\mu_{jU}^{-}\right| + \left|\nu_{ijL}-\nu_{jL}^{-}\right| + \left|\nu_{ijU}-\nu_{jU}^{-}\right| \right]} {\sum_{j=1}^{n} \sum_{i=1}^{m} \left[ \left|\mu_{ijL}-\mu_{jL}^{-}\right| + \left|\mu_{ijU}-\mu_{jU}^{-}\right| + \left|\nu_{ijL}-\nu_{jL}^{-}\right| + \left|\nu_{ijU}-\nu_{jU}^{-}\right| \right]},j=1,2,\cdots,n \tag{3.14} } ωj=j=1ni=1m[μijLμjL+μijUμjU+νijLνjL+νijUνjU]i=1m[μijLμjL+μijUμjU+νijLνjL+νijUνjU],j=1,2,,n(3.14)

3.2.2 属性权重未知情形下基于理想解的区间直觉模糊多属性决策步骤

  S.1 确定多属性决策问题的方案集 Y = { Y 1 , Y 2 , ⋯   , Y m } Y=\{Y_1,Y_2,\cdots,Y_m\} Y={Y1,Y2,,Ym}和属性集 G = { G 1 , G 2 , ⋯   , G n } G=\{G_1,G_2,\cdots,G_n\} G={G1,G2,,Gn},获取多属性决问题中方案 Y i ∈ Y Y_{i} \in Y YiY关于属性 G j ∈ G G_{j} \in G GjG的区间直觉模糊特征信息,构建区间直觉模糊决策矩阵 F = ( ⟨ [ μ i j L , μ i j U ] , [ ν i j L , ν i j U ] ⟩ ) m × n F=\left(\left\langle \left[\mu_{ijL},\mu_{ijU}\right],\left[\nu_{ijL},\nu_{ijU}\right] \right\rangle\right)_{m×n} F=([μijL,μijU],[νijL,νijU])m×n

  S.2 根据直觉模糊多属性决策矩阵 F F F确定多属性解决问题的正理想解 Y + Y^{+} Y+和负理想解 Y − Y^{-} Y:

Y + = ( ⟨ [ μ 1 L + , μ 1 U + ] , [ ν 1 L + , ν 1 U + ] ⟩ , ⟨ [ μ 2 L + , μ 2 U + ] , [ ν 2 L + , ν 2 U + ] ⟩ , ⋯   , ⟨ [ μ n L + , μ n U + ] , [ ν n L + , ν n U + ] ⟩ ) (3.15) \color{red} { \begin{aligned} Y^{+} &= \left( \left\langle \left[\mu_{1L}^{+},\mu_{1U}^{+}\right], \left[\nu_{1L}^{+},\nu_{1U}^{+}\right] \right\rangle, \left\langle \left[\mu_{2L}^{+},\mu_{2U}^{+}\right], \left[\nu_{2L}^{+},\nu_{2U}^{+}\right] \right\rangle, \cdots, \left\langle \left[\mu_{nL}^{+},\mu_{nU}^{+}\right], \left[\nu_{nL}^{+},\nu_{nU}^{+}\right] \right\rangle \right) \tag{3.15} \end{aligned} } Y+=([μ1L+,μ1U+],[ν1L+,ν1U+],[μ2L+,μ2U+],[ν2L+,ν2U+],,[μnL+,μnU+],[νnL+,νnU+])(3.15)

Y − = ( ⟨ [ μ 1 L − , μ 1 U − ] , [ ν 1 L − , ν 1 U − ] ⟩ , ⟨ [ μ 2 L − , μ 2 U − ] , [ ν 2 L − , ν 2 U − ] ⟩ , ⋯   , ⟨ [ μ n L − , μ n U − ] , [ ν n L − , ν n U − ] ⟩ ) (3.16) \color{red} { \begin{aligned} Y^{-} &= \left( \left\langle \left[\mu_{1L}^{-},\mu_{1U}^{-}\right], \left[\nu_{1L}^{-},\nu_{1U}^{-}\right] \right\rangle, \left\langle \left[\mu_{2L}^{-},\mu_{2U}^{-}\right], \left[\nu_{2L}^{-},\nu_{2U}^{-}\right] \right\rangle, \cdots, \left\langle \left[\mu_{nL}^{-},\mu_{nU}^{-}\right], \left[\nu_{nL}^{-},\nu_{nU}^{-}\right] \right\rangle \right) \tag{3.16} \end{aligned} } Y=([μ1L,μ1U],[ν1L,ν1U],[μ2L,μ2U],[ν2L,ν2U],,[μnL,μnU],[νnL,νnU])(3.16)

式中

⟨ [ μ j L + , μ j U + ] , [ ν j L + , ν j U + ] ⟩ = ⟨ [ max ⁡ i μ i j L + , max ⁡ i μ i j U + ] , [ min ⁡ i ν i j L + , min ⁡ i ν i j U + ] ⟩ , j = 1 , 2 , ⋯   , n \color{red} { \left\langle \left[\mu_{jL}^{+},\mu_{jU}^{+}\right], \left[\nu_{jL}^{+},\nu_{jU}^{+}\right] \right\rangle = \left\langle \left[\max_{i}\mu_{ijL}^{+},\max_{i}\mu_{ijU}^{+}\right], \left[\min_{i}\nu_{ijL}^{+},\min_{i}\nu_{ijU}^{+}\right] \right\rangle ,j=1,2,\cdots,n } [μjL+,μjU+],[νjL+,νjU+]=[imaxμijL+,imaxμijU+],[iminνijL+,iminνijU+],j=1,2,,n

⟨ [ μ j L − , μ j U − ] , [ ν j L − , ν j U − ] ⟩ = ⟨ [ min ⁡ i μ i j L + , min ⁡ i μ i j U + ] , [ max ⁡ i ν i j L + , max ⁡ i ν i j U + ] ⟩ , j = 1 , 2 , ⋯   , n \color{red} { \left\langle \left[\mu_{jL}^{-},\mu_{jU}^{-}\right], \left[\nu_{jL}^{-},\nu_{jU}^{-}\right] \right\rangle = \left\langle \left[\min_{i}\mu_{ijL}^{+},\min_{i}\mu_{ijU}^{+}\right], \left[\max_{i}\nu_{ijL}^{+},\max_{i}\nu_{ijU}^{+}\right] \right\rangle ,j=1,2,\cdots,n } [μjL,μjU],[νjL,νjU]=[iminμijL+,iminμijU+],[imaxνijL+,imaxνijU+],j=1,2,,n

  S.3 利用式 ( 3.13 ) (3.13) (3.13) ( 3.14 ) (3.14) (3.14)或求解优化模型式 ( 3.11 ) (3.11) (3.11),得到属性 G = { G 1 , G 2 , ⋯   , G n } G=\{G_1,G_2,\cdots,G_n\} G={G1,G2,,Gn}的权重向量 ω = ( ω 1 , ω 2 , ⋯   , ω n ) T \omega = {\left( \omega_{1},\omega_{2},\cdots,\omega_{n}\right)}^{T} ω=(ω1,ω2,,ωn)T

  S.4 计算各方案 Y i ( i = 1 , 2 , ⋯   , m ) Y_{i}\left(i=1,2,\cdots,m\right) Yi(i=1,2,,m)的综合属性值 d ~ i \tilde{d}_{i} d~i:

d i = ⟨ μ i , ν i ⟩ = I I F W A ω ( F ~ i 1 , F ~ i 2 , ⋯   , F ~ i n ) = ⟨ [ 1 − ∏ j = 1 n ( 1 − μ j L ) ω j , 1 − ∏ j = 1 n ( 1 − μ j U ) ω j ] , [ ∏ j = 1 n ( ν j L ) ω j , ∏ j = 1 n ( ν j U ) ω j ] ⟩ (3.17) \color{red} { \begin{aligned} d_{i} &= \left\langle \mu_{i},\nu_{i} \right\rangle \\ &= IIFWA_{\omega}\left( \tilde{F}_{i1},\tilde{F}_{i2},\cdots,\tilde{F}_{in} \right) \\ &= \left\langle \left[1-\prod_{j=1}^{n} {\left(1-\mu_{jL}\right)}^{\omega_{j}},1-\prod_{j=1}^{n} {\left(1-\mu_{jU}\right)}^{\omega_{j}}\right], \left[\prod_{j=1}^{n} {\left(\nu_{jL}\right)}^{\omega_{j}},\prod_{j=1}^{n} {\left(\nu_{jU}\right)}^{\omega_{j}}\right]\right\rangle \tag{3.17} \end{aligned} } di=μi,νi=IIFWAω(F~i1,F~i2,,F~in)=[1j=1n(1μjL)ωj,1j=1n(1μjU)ωj],[j=1n(νjL)ωj,j=1n(νjU)ωj](3.17)

d i = ⟨ μ i , ν i ⟩ = I I F W G ω ( F ~ i 1 , F ~ i 2 , ⋯   , F ~ i n ) = ⟨ [ ∏ j = 1 n ( μ j L ) ω j , ∏ j = 1 n ( μ j U ) ω j ] , [ 1 − ∏ j = 1 n ( 1 − ν j L ) ω j , 1 − ∏ j = 1 n ( 1 − ν j U ) ω j ] ⟩ (3.18) \color{red} { \begin{aligned} d_{i} &= \left\langle \mu_{i},\nu_{i} \right\rangle \\ &= IIFWG_{\omega}\left( \tilde{F}_{i1},\tilde{F}_{i2},\cdots,\tilde{F}_{in} \right) \\ &= \left\langle \left[\prod_{j=1}^{n} {\left(\mu_{jL}\right)}^{\omega_{j}},\prod_{j=1}^{n} {\left(\mu_{jU}\right)}^{\omega_{j}}\right], \left[1-\prod_{j=1}^{n} {\left(1-\nu_{jL}\right)}^{\omega_{j}},1-\prod_{j=1}^{n} {\left(1-\nu_{jU}\right)}^{\omega_{j}}\right]\right\rangle \tag{3.18} \end{aligned} } di=μi,νi=IIFWGω(F~i1,F~i2,,F~in)=[j=1n(μjL)ωj,j=1n(μjU)ωj],[1j=1n(1νjL)ωj,1j=1n(1νjU)ωj](3.18)

  S.5 利用觉模糊数的得分数和精确公式,计算方案 Y i Y_{i} Yi的综合属性值 d ~ i \tilde{d}_{i} d~i的得分值 s ( d ~ i ) s(\tilde{d}_{i}) s(d~i)和精确值 h ( d ~ i ) h(\tilde{d}_{i}) h(d~i),确定 d ~ i ( i = 1 , 2 , … , m ) \tilde{d}_{i}(i=1,2,…,m) d~i(i=1,2,,m)的不增排列顺序,并利用排序结果对方案 Y i ( i = 1 , 2 , … , m ) Y_{i}(i=1,2,…,m) Yi(i=1,2,,m)进行优劣排序。

s ( d ~ i ) = μ i L + μ i U − ν i L − ν i U 2 h ( d ~ i ) = μ i L + μ i U + ν i L + ν i U 2 \begin{aligned} & \text{s}\left(\tilde{d}_{i}\right) = \frac{\mu_{iL}+\mu_{iU}-\nu_{iL}-\nu_{iU}}{2} \\ & \text{h}\left(\tilde{d}_{i}\right) = \frac{\mu_{iL}+\mu_{iU}+\nu_{iL}+\nu_{iU}}{2} \end{aligned} s(d~i)=2μiL+μiUνiLνiUh(d~i)=2μiL+μiU+νiL+νiU


特别说明:本专栏主要参考郭子雪等所著《直觉模糊多属性决策理论方法及应用研究》书籍,部分代码计算结果与书中有所出入,请仔细甄别!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值