import numpy as np
import matplotlib.pyplot as plt
# 空间大小
number = 200
# 细胞分布
cells = np.zeros((number, number))
cells[int(number/2)][int(number/2)-1] = 1
cells[int(number/2)][int(number/2)] = 1
cells[int(number/2)][int(number/2)+1] = 1
# 绘图
def paintCells(cells):
x = []
y = []
length = len(cells)
for i in range(length):
for j in range(length):
if cells[i][j] == 1:
x.append(i)
y.append(j)
plt.xlim((0, length))
plt.ylim((0, length))
plt.plot(x, y, '.')
plt.show()
plt.cla()
# 统计
def countCells(cells, i, j):
count = 0
for m in range(i-1, i+2):
for n in range(j-1, j+2):
if cells[m][n] == 1:
count += 1
return count
# 更新
def updateCells(cells):
length = len(cells)
ncells = np.zeros((length, length))
for i in range(1, length-1):
for j
优化算法(五)元胞自动机
最新推荐文章于 2023-04-27 11:43:15 发布
本文探讨了元胞自动机作为一种复杂系统建模工具,在优化算法领域的独特优势和应用案例。通过分析其规则演化和并行计算特性,展示了如何利用元胞自动机解决实际优化问题。
摘要由CSDN通过智能技术生成