snownlp github:https://github.com/isnowfy/snownlp
使用snownlp进行情感分析:
from snownlp import SnowNLP
#创建snownlp对象,设置要测试的语句
s = SnowNLP('这东西不错。。')
# 调用sentiments方法获取积极情感概率
print(s.sentiments)
输出:
0.8371034573341097
实现过程:
1.首先从SnowNLP入手,看一下sentiments方法,在sentiments方法中,调用了sentiment下的分类方法
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from . import normal
from . import seg
from . import tag
from . import sentiment
from .sim import bm25
from .summary import textrank
from .summary import words_merge
class SnowNLP(object):
def __init__(self, doc):
self.doc = doc
self.bm25 = bm25.BM25(doc)
@property
def words(self):
return seg.seg(self.doc)
@property
def sentences(self):
return normal.get_sentences(self.doc)
@property
def han(self):
return normal.zh2hans(self.doc)
@property
def pinyin(self):
return normal.get_pinyin(self.doc)
@property
def sentiments(self):
return sentiment.classify(self.doc)#调用了sentiment的classify分类方法
@property
def tags(self):
words = self.words
tags = tag.tag(words)
return zip(words, tags)
@property
def tf(self):
return self.bm25.f
@property
def idf(self):
return self.bm25.idf
def sim(self, doc):
return self.bm25.simall(doc)
def summary(self, limit=5):
doc = []
sents = self.sentences
for sent in sents:
words = seg.seg(sent)
words = normal.filter_stop(words)
doc.append(words)
rank = textrank.TextRank(doc)
rank.solve()
ret = []
for index in rank.top_index(limit):
ret.append(sents[index])
return ret
def keywords(self, limit=5, merge=False):
doc = []
sents = self.sentences
for sent in sents:
words = seg.seg(sent)
words = normal.filter_stop(words)
doc.append(words)
rank = textrank.KeywordTextRank(doc)
rank.solve()
ret = []
for w in rank.top_index(limit):
ret.append(w)
if merge:
wm = words_merge.SimpleMerge(self.doc, ret)
return wm.merge()
return ret
2.sentiment文件夹下的__init__文件
sentiment中创建了Sentiment对象
首先调用load方法加载训练好的数据字典,然后调用classify方法,在classify方法中实际调用的是Bayes对象中的classify方法,这个稍后再说。
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import os
import codecs
from .. import normal
from .. import seg
from ..classification.bayes import Bayes
#数据文件路径
data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'sentiment.marshal')
class Sentiment(object):
def __init__(self):
#创建Bayes对象
self.classifier = Bayes()
#保存训练好的字典数据
def save(self, fname, iszip=True):
self.classifier.save(fname, iszip)
#加载字典数据
def load(self, fname=data_path, iszip=True):
self.classifier.load(fname, iszip)
#对文档分词
def handle(self, doc):
words = seg.seg(doc)
words = normal.filter_stop(words)
return words
# 训练数据集
def train(self, neg_docs, pos_docs):
data = []
#读取消极评论list,同时为每条评论加上neg标签,也放入到一个list中
for sent in neg_docs:
data.append([self.handle(sent), 'neg'])
#读取积极评论list,为每条评论加上pos标签
for sent in pos_docs:
data.append([self.handle(sent), 'pos'])
#调用分类器的训练数据集方法,对模型进行训练
self.classifier.train(data)
#分类
def classify(self, sent):
#调用贝叶斯分类器的分类方法,获取分类标签和概率
ret, prob = self.classifier.classify(self.handle(sent))
#如果分类标签是pos直接返回概率值
if ret == 'pos':
return prob
#如果返回的是neg,由于显示的是积极概率值,因此用1减去消极概率值
return 1-prob
classifier = Sentiment()
classifier.load()
#训练数据
def train(neg_file, pos_file):
#打开消极数据文件
neg = codecs.open(neg_file, 'r', 'utf-8').readlines()
pos = codecs.open(pos_file, 'r', 'utf-8').readlines()
neg_docs = []
pos_docs = []
#遍历每一条消极评论,放入到list中
for line in neg:
neg_docs.append(line.rstrip("\r\n"))
#遍历每一条积极评论,放入到list中
for line in pos:
pos_docs.append(line.rstrip("\r\n"))
global classifier
classifier = Sentiment()
#训练数据,传入积极、消极评论list
classifier.train(neg_docs, pos_docs)
#保存数据字典
def save(fname, iszip=True):
classifier.save(fname, iszip)
#加载数据字典
def load(fname, iszip=True):
classifier.load(fname, iszip)
#对语句进行分类
def classify(sent):
return classifier.classify(sent)
sentiment中包含了训练数据集的方法,看一下是如何训练数据集的:
在sentiment文件夹下,包含了以下文件
neg.txt和pos.txt是已经分类好的评论数据,neg.txt中都是消极评论,pos中是积极评论
sentiment.marshal和sentiment.marshal.3中存放的是序列化后的数据字典,这个也稍后再说
(1)在train()方法中,首先读取消极和积极评论txt文件,然后获取每一条评论,放入到list集合中,格式大致如下
[ ' 还没有收到书!!!还没有收到书 ' , ' 小熊宝宝我觉得孩子不喜欢,能换别的吗 ' , ......]
#训练数据
def train(neg_file, pos_file):
#打开消极数据文件
neg = codecs.open(neg_file, 'r', 'utf-8').readlines()
pos = codecs.open(pos_file, 'r', 'utf-8').readlines()
neg_docs = []
pos_docs = []
#遍历每一条消极评论,放入到list中
for line in neg:
neg_docs.append(line.rstrip("\r\n"))
#遍历每一条积极评论,放入到list中
for line in pos:
pos_docs.append(line.rstrip("\r\n"))
global classifier
classifier = Sentiment()
#训练数据,传入积极、消极评论list
classifier.train(neg_docs, pos_docs)
然后调用了Sentiment对象中的train()方法:
在train方法中,遍历了传入的积极、消极评论list,为每条评论进行分词,并为加上了分类标签,此时的数据格式如下:
评论分词后的数据格式:['收到','没有'...]
加上标签后的数据格式(以消极评论为例):[ [['收到','没有' ...],'neg'] , [['小熊','宝宝' ...],‘neg’] ........]]
可以看到每一条评论都是一个list,其中又包含了评论分词后的list和评论的分类标签
# 训练数据集
def train(self, neg_docs, pos_docs):
data = []
#读取消极评论list,对每条评论分词,并加上neg标签,也放入到一个list中
for sent in neg_docs:
data.append([self.handle(sent), 'neg'])
#读取积极评论list,为每条评论分词,加上pos标签
for sent in pos_docs:
data.append([self.handle(sent), 'pos'])
#调用分类器的训练数据集方法,对模型进行训练
self.classifier.train(data)
经过了此步骤,已经对数据处理完毕,接下来就可以对数据进行训练
3.classification下的bayes.py
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import sys
import gzip
import marshal
from math import log, exp
from ..utils.frequency import AddOneProb
class Bayes(object):
def __init__(self):
#标签数据对象
self.d = {}
#所有分类的词数之和
self.total = 0
#保存字典数据
def save(self, fname, iszip=True):
#创建对象,用来存储训练结果
d = {}
#添加total,也就是积极消极评论分词总词数
d['total'] = self.total
#d为分类标签,存储每个标签的数据对象
d['d'] = {}
for k, v in self.d.items():
#k为分类标签,v为标签对应的所有分词数据,是一个AddOneProb对象
d['d'][k] = v.__dict__
#这里判断python版本
if sys.version_info[0] == 3:
fname = fname + '.3'
#这里可有两种方法可以选择进行存储
if not iszip:
##将序列化后的二进制数据直接写入文件
marshal.dump(d, open(fname, 'wb'))
else:
#首先获取序列化后的二进制数据,然后写入文件
f = gzip.open(fname, 'wb')
f.write(marshal.dumps(d))
f.close()
#加载数据字典
def load(self, fname, iszip=True):
#判断版本
if sys.version_info[0] == 3:
fname = fname + '.3'
#判断打开文件方式
if not iszip:
d = marshal.load(open(fname, 'rb'))
else:
try:
f = gzip.open(fname, 'rb')
d = marshal.loads(f.read())
except IOError:
f = open(fname, 'rb')
d = marshal.loads(f.read())
f.close()
#从文件中读取数据,为total和d对象赋值
self.total = d['total']
self.d = {}
for k, v in d['d'].items():
self.d[k] = AddOneProb()
self.d[k].__dict__ = v
#训练数据集
def train(self, data):
#遍历数据集
for d in data:
#d[1]标签-->分类类别
c = d[1]
#判断数据字典中是否有当前的标签
if c not in self.d:
#如果没有该标签,加入标签,值是一个AddOneProb对象
self.d[c] = AddOneProb()
#d[0]是评论的分词list,遍历分词list
for word in d[0]:
#调用AddOneProb中的add方法,添加单词
self.d[c].add(word, 1)
#计算总词数
self.total = sum(map(lambda x: self.d[x].getsum(), self.d.keys()))
#贝叶斯分类
def classify(self, x):
tmp = {}
#遍历每个分类标签
for k in self.d:
#获取每个分类标签下的总词数和所有标签总词数,求对数差相当于log(某标签下的总词数/所有标签总词数)
tmp[k] = log(self.d[k].getsum()) - log(self.total)
for word in x:
#获取每个单词出现的频率,log[(某标签下的总词数/所有标签总词数)*单词出现频率]
tmp[k] += log(self.d[k].freq(word))
#计算概率,由于直接得到的概率值比较小,这里应该使用了一种方法来转换,原理还不是很明白
ret, prob = 0, 0
for k in self.d:
now = 0
try:
for otherk in self.d:
now += exp(tmp[otherk]-tmp[k])
now = 1/now
except OverflowError:
now = 0
if now > prob:
ret, prob = k, now
return (ret, prob)
from . import good_turing
class BaseProb(object):
def __init__(self):
self.d = {}
self.total = 0.0
self.none = 0
def exists(self, key):
return key in self.d
def getsum(self):
return self.total
def get(self, key):
if not self.exists(key):
return False, self.none
return True, self.d[key]
def freq(self, key):
return float(self.get(key)[1])/self.total
def samples(self):
return self.d.keys()
class NormalProb(BaseProb):
def add(self, key, value):
if not self.exists(key):
self.d[key] = 0
self.d[key] += value
self.total += value
class AddOneProb(BaseProb):
def __init__(self):
self.d = {}
self.total = 0.0
self.none = 1
#添加单词
def add(self, key, value):
#更新该类别下的单词总数
self.total += value
#如果单词未出现过
if not self.exists(key):
#将单词加入对应标签的数据字典中,value设为1
self.d[key] = 1
#更新总词数
self.total += 1
#如果单词出现过,对该单词的value值加1
self.d[key] += value
在bayes对象中,有两个属性d和total,d是一个数据字典,total存储所有分类的总词数,经过train方法训练数据集后,d中存储的是每个分类标签的数据key为分类标签,value是一个AddOneProb对象。
def __init__(self):
self.d = {}
self.total = 0.0
在AddOneProb对象中,同样存在d和total属性,这里的total存储的是每个分类各自的单词总数,d中存储的是所有出现过的单词,单词作为key,单词出现的次数作为value.
为了下次计算概率时,不用重新训练,可以将训练得到的数据序列化到文件中,下次直接加载文件,将文件反序列为对象,从对象中获取数据即可(save和load方法)。
4.得到了训练的数据后,可以使用朴素贝叶斯分类对进行分类了
朴素贝叶斯分类可参考:NLP系列(2)_用朴素贝叶斯进行文本分类(上)