文章目录
前言
《Language Models are Few-Shot Learners,2020》
前文提到GPT-2进一步提升了模型的zero shot能力,但是在一些任务中仍可能会“胡说”,GTP-3基于此提出了few shot,即预测时给出少量精确案例,提升模型的准确性,同时进一步增大模型。
一、GTP-3的改进
- Larger Model: GPT-3将Transformer堆叠的层数从48层增加到96层,每层有96个注意力头,隐层的维度从1600提升至12888,最大模型参数达到1750 亿(175B)。
- Larger Dataset:GPT-3 使用了多个数据集,其中最大的是 CommonCrawl,原始未处理的数据达到了 45TB,通过数据清洗工作(LR 分类、去重、加入 BERT、GPT、GPT-2 等数据集),最终得到的数据集大小为570G。
- 上下文大小 (context size) :从GPT-2的1024提升到了2048。
- 注意力机制:引入了 Sparse Transformer 中的 sparse attention 模块(稀疏注意力)。
ps:
sparse