深度学习原理部分数学公式

01.01 线性分类

k-近邻

超参数
d1(l1,l2)=i|lp1lp2| d 1 ( l 1 , l 2 ) = ∑ i | l 1 p − l 2 p |
d2(l1,l2)=i|lp1lp2| d 2 ( l 1 , l 2 ) = ∑ i | l 1 p − l 2 p |

01.02 得分函数

f(x,W)=Wx+b f ( x , W ) = W x + b
f(xi,W,b)=Wxi+b f ( x i , W , b ) = W x i + b

W权重,向量
x数据(像素),向量

01.03 损失函数

svm损失函数
Li=jyimax(0,sjsyi+1) L i = ∑ j ≠ y i max ( 0 , s j − s y i + 1 )

1 ⇒ δ δ

线性函数: f(x,W)=Wx f ( x , W ) = W x

损失函数01
L=1Ni=0Njimax(0,f(xi;W)jf(xi;W)yi+1) L = 1 N ∑ i = 0 N ∑ j ≠ i max ( 0 , f ( x i ; W ) j − f ( x i ; W ) y i + 1 )

损失函数02(加上正则化惩罚项)
L=1Ni=0Njimax(0,f(xi;W)jf(xi;W)yi+1)+λR(W) L = 1 N ∑ i = 0 N ∑ j ≠ i max ( 0 , f ( x i ; W ) j − f ( x i ; W ) y i + 1 ) + λ R ( W )

L2正则化
R(W)=klWk2,l R ( W ) = ∑ k ∑ l W 2 , l k
X=[1,1,1,1] X = [ 1 , 1 , 1 , 1 ]
w1=[1,0,0,0] w 1 = [ 1 , 0 , 0 , 0 ]
w2=[0.25,0.25,0.25,0.25] w 2 = [ 0.25 , 0.25 , 0.25 , 0.25 ]
WT1x=WT2x=1 W 1 T x = W 2 T x = 1

随时函数终极版(数据loss+权重loss)
L=1NNi=0ji[max(0,f(xi;W)jf(xi;W)yi+1)]+λkiW2k,i L = 1 N ∑ i = 0 N ∑ j ≠ i [ max ( 0 , f ( x i ; W ) j − f ( x i ; W ) y i + 1 ) ] + λ ∑ k ∑ i W k , i 2

01.04 softmax分类器

softmax输出一个概率值

sigmoid函数 g(z)=11+ez g ( z ) = 1 1 + e − z

g(z) ==>{0,1}

损失函数(交叉熵函数)softmax
fj(z)=ezjkezk f j ( z ) = e z j ∑ k e z k
Li=log(esyijesj) L i = − log ⁡ ( e s y i ∑ j e s j )

01.05 最优化问题

跟随梯度: df(x)dx=limh0f(x+h)f(x)h d f ( x ) d x = lim h → 0 f ( x + h ) − f ( x ) h
学习率、梯度下降

01.06 反向传播

f=Wx f = W x
Li=jyimax(0,sjsyi+1) L i = ∑ j ≠ y i max ( 0 , s j − s y i + 1 )

f(x,y,z)=(x+y)z f ( x , y , z ) = ( x + y ) z
q=x+y q = x + y qx ∂ q ∂ x

f(w,x)=11+e(w0x0+w1x1+w2) f ( w , x ) = 1 1 + e − ( w 0 x 0 + w 1 x 1 + w 2 )
σ(x)=11+ex σ ( x ) = 1 1 + e − x
dσ(x)dx=ex(1+ex)2=(1+ex11+ex)(11+ex)=(1σ(x))σ(x) d σ ( x ) d x = e − x ( 1 + e − x ) 2 = ( 1 + e − x − 1 1 + e − x ) ( 1 1 + e − x ) = ( 1 − σ ( x ) ) σ ( x )

加法门单元:均等分配
max门单元:取最大值
乘法门单元:交换

02.01 神经网络

f(x)=Wx f ( x ) = W x
Li=jyimax(0,sjsyi+1) L i = ∑ j ≠ y i max ( 0 , s j − s y i + 1 )

layer {神经元}
innerProduct 全链接,内积
A层一个神经元i和 B层全部神经元的一组连接,需要一组权重参数 Wi W i
A层有n个神经元,A==>B,就有n组权重参数 Wn W n

激活函数(非线性单元、非线性表达)
线性函数: f=Wx f = W x
非线性函数:
f=W2max(0,W1x) f = W 2 max ( 0 , W 1 x ) 单层神经网络
f=W3max(0,W2max(0,W1x)) f = W 3 max ( 0 , W 2 max ( 0 , W 1 x ) ) 双层神经网络

激活函数Sigmoid: σ(x)=11+ex σ ( x ) = 1 1 + e − x
Sigmoid会发生梯度消失,不是以0为中心。

激活函数TanH:存在梯度消失
tanh(x)=sinhxcoshx=exexex+ex tanh ⁡ ( x ) = sinh ⁡ x cosh ⁡ x = e x − e − x e x + e − x

激活函数ReLU: ReLU(x)=max(0,x) R e L U ( x ) = max ( 0 , x ) (大值增强,<=0忽略)

数据预处理
权重初始化
drop-out: 60%

03.01卷积神经网络

输入大小为:W1 x H1 x D1
需要指定的超参数:filter个数(K),filter大小(F),步长(S),边界填充(P)
输出:
W2=(W1F+2P)/S+1 W 2 = ( W 1 − F + 2 P ) / S + 1
H2=(H1F+2P)/S+1 H 2 = ( H 1 − F + 2 P ) / S + 1
D2=K D 2 = K

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值