§第五章第二节方阵的特征值与特征向量
一、特征值与特征向量的概念
定义6.设A为n阶方阵,如果数λ和n维非零列向量x,使关系式Ax=λx(1)成立,那么,称数λ为方阵A的特征值,非零向量x称为A的对应于特征值λ的特征向量.
(1)也可以写成(A−λE)x=0(2)
这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式|A−λE|=0(3)
由此,我们可由(3)求A的特征值,由(2)求A的特征向量.
1.特征多项式
f(λ)=|λE−A|=∣ ∣ ∣ ∣ ∣ ∣ λ−a 11 −a 21 ⋯−a n1 −a 12 λ−a 22 ⋯−a n2 ⋯⋯⋯⋯ −a 1n −a 2n ⋯λ−a nn ∣ ∣ ∣ ∣ ∣ ∣ =λ n −(a 11 +a 22 +⋯+a nn )λ n−1 −⋯−(−1) n |A|
2.特征方程
|A−λE|=0
即λ n −(a 11 +a 22 +⋯+a nn )λ n−1 +⋯+(−1) n |A|=0
3.A的迹
A的迹=a 11 +a 22 +⋯+a nn
二、特征值与特征向量的性质
设λ 1 ,λ 2 ,⋯,λ n 是A的n个特征值,由高次方程的韦达定理.不难证明:性质1.λ 1 +λ 2 +⋯+λ n =a 11 +a 22 +⋯+a nn 即方阵A的特征值的和等于A的迹
一元二次方程的韦达定理:x 2 +px+q=0x 1 +x 2 =−px 1 x 2 =q
性质2.λ 1 λ 2 ⋯λ n =|A|
例1.证明方阵A可逆的充分必要条件是零不是A的特征值.
证.设λ 1 ,λ 2 ,⋯,λ n ,是A的n个特征值.必要性:因为A可逆,所以|A|≠0,由性质2λ 1 λ 2 ⋯λ n ≠0故λ 1 ,λ 2 ,⋯,λ n 不为零,从而零不是A的特征值.充分性:由于λ 1 ,λ 2 ,⋯,λ n 均不为零,从而λ 1 λ 2 ⋯λ n ≠0由性质2,|A|=λ 1 λ 2 ⋯λ n ≠0,故A可逆.
同理可证:A不可逆的充要条件是A有零特征值.
三、特征值与特征向量的求法
1.由|A−λE|=0,求A的n个特征值.
2.由Ax=λx,求抽象矩阵的特征值.
3.由(A−λE)x=0,求A的特征向量.
例2.求矩阵A=⎛ ⎝ ⎜ −1−41 130 002 ⎞ ⎠ ⎟ 的特征值和特征向量.
解:①由|A−λE|=0,求A的全部特征值,|A−λE|=∣ ∣ ∣ ∣ −1−λ−41 13−λ0 002−λ ∣ ∣ ∣ ∣ =(−1) (3+3) (2−λ)[(−1−λ)(3−λ)−(−4×1)]=(2−λ)(1−λ) 2 =0得A的特征值为:λ 1 =2,λ 2 =λ 3 =1②由(A−λE)x=0,求A的特征向量.当λ=2时,解方程(A−2E)x=0由A−2E=⎛ ⎝ ⎜ −3−41 110 000 ⎞ ⎠ ⎟ ∼⎛ ⎝ ⎜ 100 010 000 ⎞ ⎠ ⎟ 得基础解系p 1 =⎛ ⎝ ⎜ 001 ⎞ ⎠ ⎟ 所以kp 1 (k≠0)是对应于λ 1 =2的全部特征向量.当λ 2 =λ 3 =1时,解方程(A−E)x=0由(A−E)=⎛ ⎝ ⎜ −2−41 120 001 ⎞ ⎠ ⎟ ∼⎛ ⎝ ⎜ 100 010 120 ⎞ ⎠ ⎟ 得基础解系p 2 =⎛ ⎝ ⎜ −1−21 ⎞ ⎠ ⎟ ,所以k 2 p 2 (k 2 ≠0)是对应于λ 2 =λ 3 =1的全部特征向量.
例3.求矩阵A=⎛ ⎝ ⎜ −20−4 121 103 ⎞ ⎠ ⎟ 的特征值和特征向量.
解:①由|A−λE|=0求A的全部特征值.|A−λE|=∣ ∣ ∣ ∣ −2−λ0−4 12−λ1 103−λ ∣ ∣ ∣ ∣ =(−1) (2+2) (2−λ)[(−2−λ)(3−λ)−(−4×1)]=−(λ+1)(λ−2) 2 =0方程的特征值为λ 1 =−1,λ 2 =λ 3 =2②由(A−λE)x=0,求特征向量.当λ=−1时,解方程(A+E)x=0,由A+E=⎛ ⎝ ⎜ −10−4 131 104 ⎞ ⎠ ⎟ ∼⎛ ⎝ ⎜ 100 010 −100 ⎞ ⎠ ⎟ 得基础解系p 1 =⎛ ⎝ ⎜ 101 ⎞ ⎠ ⎟ ,所以k 1 p 1 (k 1 ≠0)是对应于λ 1 =−1时的全部特征向量.当λ 2 =λ 3 =2时,解方程(A−2E)x=0,由A−2E=⎛ ⎝ ⎜ −40−4 101 101 ⎞ ⎠ ⎟ ∼⎛ ⎝ ⎜ ⎜ ⎜ 100 −14 00 −14 00 ⎞ ⎠ ⎟ ⎟ ⎟ 得基础解系p 2 =⎛ ⎝ ⎜ ⎜ ⎜ 14 10 ⎞ ⎠ ⎟ ⎟ ⎟ ,p 3 =⎛ ⎝ ⎜ ⎜ ⎜ 14 01 ⎞ ⎠ ⎟ ⎟ ⎟ ,所以k 2 p 2 +k 3 p 3 =k 2 ⎛ ⎝ ⎜ ⎜ ⎜ 14 10 ⎞ ⎠ ⎟ ⎟ ⎟ +k 3 ⎛ ⎝ ⎜ ⎜ ⎜ 14 01 ⎞ ⎠ ⎟ ⎟ ⎟ ,(k 2 ≠0,k 3 ≠0)是λ 2 =λ 3 =2时的所有特征向量.
例4.设λ是方阵A的特征值,则λ 2 也是A 2 的特征值.
证:因为λ是方阵A的特征值,设P≠0,使AP=λP,于是A 2 P=A(AP)=A(λP)=λ(AP)=λ(λP)=λ 2 P
例5.设3阶方阵A满足A 3 −3A 2 +2A=0,求A的特征值.
解:设λ是A的特征值,x是A的关于λ所对应的特征向量.则Ax=λx,从而A 3 x−3A 2 x+2Ax=0由例2得(λ 3 −3λ 2 +2λ)x=0x≠0λ 3 −3λ 2 +2λ=0λ(λ−1)(λ−2)=0故得A的特征值为:λ 1 =0,λ 2 =1,λ 3 =2.
例6.若λ是可逆矩阵A的特征,x是A的关于λ所对应的特征向量,则(1)1λ 是A −1 的特征值.(2)|A|λ 是A ∗ 的特征值,x仍是它们的特征值向量.
证:(1)由已知,Ax=λx,两边左乘A −1 x=λA −1 x从而A −1 x=1λ x由定义知,1λ 是A −1 的特征值.(2)因Ax=λx,两边左乘A ∗ A ∗ Ax=λA ∗ x即|A|x=λA ∗ x从而A ∗ x=|A|λ x由定义知,|A|λ 是A ∗ 的特征值,x仍是它们的特征值向量
由上面各例类推,不难证明,若λ是A的特征值,则λ k 是A k 的特征值,φ(λ)是φ(A)的特征值.(其中φ(λ)=a 0 +a 1 λ+⋯+a m λ m ,φ(A)=a 0 E+a 1 A+⋯+a m A m )
例7.设有4阶方阵A满足|A+3E|=0,且AA T =2E,|A|<0,求A ∗ 的一个特征值.
解:由|A+3E|=0,即|A−(−3)E|=0,所以λ=−3是A的一个特征值.又|AA T |=|2E|=2 4 ,得|A| 2 =16,从而|A|=±4,而|A|<0,所以|A|=−4,故A ∗ 的一个特征值为:|A|λ =−4−3 =43 .
四、特征值与特征向量的有关定理
定理2.设λ 1 ,λ 2 ,⋯,λ m 是A的m个特征值p 1 ,p 2 ,⋯,p m 依次与之对应的特征向量,若λ 1 ,λ 2 ,⋯,λ m 各不相同,则p 1 ,p 2 ,⋯,p m 线性无关.
证:设有常数x 1 ,x 2 ,⋯,x m 使x 1 p 1 +x 2 p 2 +⋯+x m p m =0(1)则A(x 1 p 1 +x 2 p 2 +⋯+x m p m )=0,即λ 1 x 1 p 1 +λ 2 x 2 p 2 +⋯+λ m x m p m =0(2)在(2)两边左乘A,并Ap j =λ j p j ,(j=1,2,⋯,m)得λ 2 1 x 1 p 1 +λ 2 2 x 2 p 2 +⋯+λ 2 m x m p m =0(3)依次做下去λ m−1 1 x 1 p 1 +λ m−1 2 x 2 p 2 +⋯+λ m−1 m x m p m =0(m)将上面m个式子联立成线性方程组,得向量方程组
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ x 1 p 1 +x 2 p 2 +⋯+x m p m =0λ 1 x 1 p 1 +λ 2 x 2 p 2 +⋯+λ m x m p m =0λ 2 1 x 1 p 1 +λ 2 2 x 2 p 2 +⋯+λ 2 m x m p m =0⋯⋯⋯⋯⋯λ m−1 1 x 1 p 1 +λ m−1 2 x 2 p 2 +⋯+λ m−1 m x m p m =0
由于系数行列式是范德蒙行列式,所以D=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1λ 1 λ 2 1 ⋯λ m−1 1 1λ 2 λ 2 2 ⋯λ m−1 2 ⋯1⋯⋯⋯⋯ λ m λ 2 m ⋯λ m−1 m ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =∏ m≥i>j≥1 (λ i −λ j )又因为λ 1 ,λ 2 ,⋯,λ m 各不相同,所以D≠0由克莱默法则知,向量方程组仅有零解.即x j p j =0(j=1,2,⋯,m)而p j ≠0(j=1,2,⋯,m),而x j =0(j=1,2,⋯,m),由(1)知p 1 ,p 2 ,⋯,p m 线性无关.
例8.设A为4阶方阵,其特征值λ 1 ,λ 2 ,λ 3 ,λ 4 各不相同,对应的特征向量依次为α 1 ,α 2 ,α 3 ,α 4 ,令β=α 1 +α 2 +α 3 +α 4 ,证明:β,Aβ,A 2 β,A 3 β线性无关.
证明:因为Aα j =λ j α j (j=1,2,3,4),所以Aβ=A(α 1 +α 2 +α 3 +α 4 )=λ 1 α 1 +λ 2 α 2 +λ 3 α 3 +λ 4 α 4 A 2 β=A(λ 1 α 1 +λ 2 α 2 +λ 3 α 3 +λ 4 α 4 )=λ 2 1 α 1 +λ 2 2 α 2 +λ 2 3 α 3 +λ 2 4 α 4 A 3 β=A(λ 2 1 α 1 +λ 2 2 α 2 +λ 2 3 α 3 +λ 2 4 α 4 )=λ 3 1 α 1 +λ 3 2 α 2 +λ 3 3 α 3 +λ 3 4 α 4 设常数k 1 ,k 2 ,k 3 ,k 4 使k 1 β+k 2 Aβ+k 3 A 2 β+k 4 A 3 β=0即k 1 (α 1 +α 2 +α 3 +α 4 )+k 2 (λ 1 α 1 +λ 2 α 2 +λ 3 α 3 +λ 4 α 4 )+k 3 (λ 2 1 α 1 +λ 2 2 α 2 +λ 2 3 α 3 +λ 2 4 α 4 )+k 4 (λ 3 1 α 1 +λ 3 2 α 2 +λ 3 3 α 3 +λ 3 4 α 4 )=0整理,得:(k 1 +k 2 λ 1 +k 3 λ 2 1 +k 4 λ 3 1 )α 1 +(k 1 +k 2 λ 2 +k 3 λ 2 2 +k 4 λ 3 2 )α 2 +(k 1 +k 2 λ 3 +k 3 λ 2 3 +k 4 λ 3 3 )α 3 +(k 1 +k 2 λ 4 +k 3 λ 2 4 +k 4 λ 3 4 )α 4 =0
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ k 1 +k 2 λ 1 +k 3 λ 2 1 +k 4 λ 3 1 =0k 1 +k 2 λ 2 +k 3 λ 2 2 +k 4 λ 3 2 =0k 1 +k 2 λ 3 +k 3 λ 2 3 +k 4 λ 3 3 =0k 1 +k 2 λ 4 +k 3 λ 2 4 +k 4 λ 3 4 =0
其系数行列式是4阶范德蒙行列式,且λ 1 ,λ 2 ,λ 3 ,λ 4 各不相同,所以上面的方程组仅有零解k 1 =k 2 =k 3 =k 4 =0.即β,Aβ,A 2 β,A 3 β线性无关.