线性代数 05.02 方阵的特征值与特征向量

§ 

 

6.An,λnx,使Ax=λx(1),,λA,xAλ. 
(1)(AλE)x=0(2) 
nn线,|AλE|=0(3) 
,(3)A,(2)A. 

1. 

f(λ)=|λEA|=∣ ∣ ∣ ∣ ∣ ∣ λa 11 a 21 a n1  a 12 λa 22 a n2   a 1n a 2n λa nn  ∣ ∣ ∣ ∣ ∣ ∣ =λ n (a 11 +a 22 ++a nn )λ n1 (1) n |A| 

2. 

|AλE|=0 
λ n (a 11 +a 22 ++a nn )λ n1 ++(1) n |A|=0 

3.A 

A=a 11 +a 22 ++a nn  

 

λ 1 ,λ 2 ,,λ n An,.:1.λ 1 +λ 2 ++λ n =a 11 +a 22 ++a nn AA 

:x 2 +px+q=0x 1 +x 2 =px 1 x 2 =q 

2.λ 1 λ 2 λ n =|A| 

1.AA. 
.λ 1 ,λ 2 ,,λ n ,An.:A,|A|0,2λ 1 λ 2 λ n 0λ 1 ,λ 2 ,,λ n ,A.:λ 1 ,λ 2 ,,λ n ,λ 1 λ 2 λ n 02,|A|=λ 1 λ 2 λ n 0,A. 
:AA. 

 

1.|AλE|=0,An. 
2.Ax=λx,. 
3.(AλE)x=0,A. 

2.A=⎛ ⎝ ⎜ 141 130 002 ⎞ ⎠ ⎟ . 
:|AλE|=0,A,|AλE|=∣ ∣ ∣ ∣ 1λ41 13λ0 002λ ∣ ∣ ∣ ∣ =(1) (3+3) (2λ)[(1λ)(3λ)(4×1)]=(2λ)(1λ) 2 =0A:λ 1 =2,λ 2 =λ 3 =1(AλE)x=0,A.λ=2,(A2E)x=0A2E=⎛ ⎝ ⎜ 341 110 000 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 100 010 000 ⎞ ⎠ ⎟ p 1 =⎛ ⎝ ⎜ 001 ⎞ ⎠ ⎟ kp 1 (k0)λ 1 =2.λ 2 =λ 3 =1,(AE)x=0(AE)=⎛ ⎝ ⎜ 241 120 001 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 100 010 120 ⎞ ⎠ ⎟ p 2 =⎛ ⎝ ⎜ 121 ⎞ ⎠ ⎟ ,k 2 p 2 (k 2 0)λ 2 =λ 3 =1. 

3.A=⎛ ⎝ ⎜ 204 121 103 ⎞ ⎠ ⎟ . 
:|AλE|=0A.|AλE|=∣ ∣ ∣ ∣ 2λ04 12λ1 103λ ∣ ∣ ∣ ∣ =(1) (2+2) (2λ)[(2λ)(3λ)(4×1)]=(λ+1)(λ2) 2 =0λ 1 =1,λ 2 =λ 3 =2(AλE)x=0,.λ=1,(A+E)x=0,A+E=⎛ ⎝ ⎜ 104 131 104 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 100 010 100 ⎞ ⎠ ⎟ p 1 =⎛ ⎝ ⎜ 101 ⎞ ⎠ ⎟ ,k 1 p 1 (k 1 0)λ 1 =1.λ 2 =λ 3 =2,(A2E)x=0,A2E=⎛ ⎝ ⎜ 404 101 101 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎜ ⎜ 100 14 00 14 00 ⎞ ⎠ ⎟ ⎟ ⎟ p 2 =⎛ ⎝ ⎜ ⎜ ⎜ 14 10 ⎞ ⎠ ⎟ ⎟ ⎟ p 3 =⎛ ⎝ ⎜ ⎜ ⎜ 14 01 ⎞ ⎠ ⎟ ⎟ ⎟ ,k 2 p 2 +k 3 p 3 =k 2 ⎛ ⎝ ⎜ ⎜ ⎜ 14 10 ⎞ ⎠ ⎟ ⎟ ⎟ +k 3 ⎛ ⎝ ⎜ ⎜ ⎜ 14 01 ⎞ ⎠ ⎟ ⎟ ⎟ ,(k 2 0,k 3 0)λ 2 =λ 3 =2. 

4.λA,λ 2 A 2 . 
:λA,P0,使AP=λP,A 2 P=A(AP)=A(λP)=λ(AP)=λ(λP)=λ 2 P 

5.3AA 3 3A 2 +2A=0,A. 
:λA,xAλ.Ax=λx,A 3 x3A 2 x+2Ax=02(λ 3 3λ 2 +2λ)x=0x0λ 3 3λ 2 +2λ=0λ(λ1)(λ2)=0A:λ 1 =0,λ 2 =1,λ 3 =2. 

6.λA,xAλ,(1)1λ A 1 .(2)|A|λ A  ,x. 
:(1),Ax=λx,A 1 x=λA 1 xA 1 x=1λ x,1λ A 1 .(2)Ax=λx,A  A  Ax=λA  x|A|x=λA  xA  x=|A|λ x,|A|λ A  ,x 

,,λA,λ k A k ,φ(λ)φ(A).(φ(λ)=a 0 +a 1 λ++a m λ m ,φ(A)=a 0 E+a 1 A++a m A m ) 

7.4A|A+3E|=0,AA T =2E,|A|<0,A  . 
:|A+3E|=0,|A(3)E|=0,λ=3A.|AA T |=|2E|=2 4 ,|A| 2 =16,|A|=±4,|A|<0,|A|=4,A  :|A|λ =43 =43 . 

 

2.λ 1 ,λ 2 ,,λ m Amp 1 ,p 2 ,,p m ,λ 1 ,λ 2 ,,λ m ,p 1 ,p 2 ,,p m 线. 
:x 1 ,x 2 ,,x m 使x 1 p 1 +x 2 p 2 ++x m p m =0(1)A(x 1 p 1 +x 2 p 2 ++x m p m )=0,λ 1 x 1 p 1 +λ 2 x 2 p 2 ++λ m x m p m =0(2)(2)A,Ap j =λ j p j ,(j=1,2,,m)λ 2 1 x 1 p 1 +λ 2 2 x 2 p 2 ++λ 2 m x m p m =0(3)λ m1 1 x 1 p 1 +λ m1 2 x 2 p 2 ++λ m1 m x m p m =0(m)m线, 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ x 1 p 1 +x 2 p 2 ++x m p m =0λ 1 x 1 p 1 +λ 2 x 2 p 2 ++λ m x m p m =0λ 2 1 x 1 p 1 +λ 2 2 x 2 p 2 ++λ 2 m x m p m =0λ m1 1 x 1 p 1 +λ m1 2 x 2 p 2 ++λ m1 m x m p m =0  
,D=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1λ 1 λ 2 1 λ m1 1  1λ 2 λ 2 2 λ m1 2  1 λ m λ 2 m λ m1 m  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = mi>j1 (λ i λ j )λ 1 ,λ 2 ,,λ m ,D0,.x j p j =0(j=1,2,,m)p j 0(j=1,2,,m),x j =0(j=1,2,,m),(1)p 1 ,p 2 ,,p m 线. 

8.A4,λ 1 ,λ 2 ,λ 3 ,λ 4 ,α 1 ,α 2 ,α 3 ,α 4 ,β=α 1 +α 2 +α 3 +α 4 ,:β,Aβ,A 2 β,A 3 β线. 
:Aα j =λ j α j (j=1,2,3,4),Aβ=A(α 1 +α 2 +α 3 +α 4 )=λ 1 α 1 +λ 2 α 2 +λ 3 α 3 +λ 4 α 4 A 2 β=A(λ 1 α 1 +λ 2 α 2 +λ 3 α 3 +λ 4 α 4 )=λ 2 1 α 1 +λ 2 2 α 2 +λ 2 3 α 3 +λ 2 4 α 4 A 3 β=A(λ 2 1 α 1 +λ 2 2 α 2 +λ 2 3 α 3 +λ 2 4 α 4 )=λ 3 1 α 1 +λ 3 2 α 2 +λ 3 3 α 3 +λ 3 4 α 4 k 1 ,k 2 ,k 3 ,k 4 使k 1 β+k 2 Aβ+k 3 A 2 β+k 4 A 3 β=0k 1 (α 1 +α 2 +α 3 +α 4 )+k 2 (λ 1 α 1 +λ 2 α 2 +λ 3 α 3 +λ 4 α 4 )+k 3 (λ 2 1 α 1 +λ 2 2 α 2 +λ 2 3 α 3 +λ 2 4 α 4 )+k 4 (λ 3 1 α 1 +λ 3 2 α 2 +λ 3 3 α 3 +λ 3 4 α 4 )=0,:(k 1 +k 2 λ 1 +k 3 λ 2 1 +k 4 λ 3 1 )α 1 +(k 1 +k 2 λ 2 +k 3 λ 2 2 +k 4 λ 3 2 )α 2 +(k 1 +k 2 λ 3 +k 3 λ 2 3 +k 4 λ 3 3 )α 3 +(k 1 +k 2 λ 4 +k 3 λ 2 4 +k 4 λ 3 4 )α 4 =0 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ k 1 +k 2 λ 1 +k 3 λ 2 1 +k 4 λ 3 1 =0k 1 +k 2 λ 2 +k 3 λ 2 2 +k 4 λ 3 2 =0k 1 +k 2 λ 3 +k 3 λ 2 3 +k 4 λ 3 3 =0k 1 +k 2 λ 4 +k 3 λ 2 4 +k 4 λ 3 4 =0  
4,λ 1 ,λ 2 ,λ 3 ,λ 4 ,k 1 =k 2 =k 3 =k 4 =0.β,Aβ,A 2 β,A 3 β线. 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值