离散数学 02.01 命题以及逻辑联结词

 

数理逻辑是用数学的方法研究思维规律的一门学科。由于它使用了一套符号,简洁地表达各种推理的逻辑关系,因此,数理逻辑一般也称为符号逻辑。数理逻辑和计算机的发展有着密切的联系,它为机器证明、自动程序设计、计算机辅助设计等计算机应用和理论研究提供必要的理论基础。下面两章将介绍数理逻辑最基本的内容:命题逻辑和谓词逻辑。

§2.1 

2.1.1 

语言的单位是句子,句子可以分为疑问句、祈使句、感叹句与陈述句等,其中只有陈述句具有真假意义,其它类型的句子无所谓真假。命题逻辑研究的对象是命题。所谓命题是指一句有真假意义的话。
例如,“北京是中国的首都”是命题,而且它是真的;
“长春是中国最大的城市”是命题,但它是假的。
“关门!”,“你上哪?”这张命令和问话不是命题。

需要注意的是,一个句子本身是否分辨真假与我们是否知道它的真假是两回事。也就是说,对于一个句子,有时我们可能无法判断它的真假,但这个句子本身却是有真假的。例如:
(1)1960年长春春城电影院放映了国产故事片“白毛女”。
(2)太阳系外有宇宙人。
(1)和(2)都是命题。(1)是对过去的事情进行判断,虽然我们一时很难分辨它的真假,但这句话本身是有其真假的。对于(2),目前人们尚无法确定其真假,但从事物的本质而论,句子本身是可分辨真假的,这类语句也称为命题。命题用大写英文字母 P,Q,,P 1 ,P 2 ,  , 表示。如果一个命题是真的,就说它的真值是1;如果一个命题是假的,就说它的真值是0。我们也用1代表一个抽象的真命题,用0代表一个抽象的假命题。

2.1.2 

当我们用命题组成新的句子的时候,使用了语法中的逻辑联结词,下面我们介绍五种逻辑联结词(或称命题的五种运算)。我们将看到,它们和自然语言里的联结词是有所不同的,它们是自然语言里的联结词的逻辑抽象。若干个原子命题通过命题逻辑联结词而构成的新命题称为复合命题。

2.1.1.PPP¬P,P¬PP 
P:¬P: 

2.1.2.PQPQPQPQPQPQPQ 
P:Q:PQ: 
广PQPQ 

2.1.3.PQPQPQPQ,PQPQPQ 
P2×2=5,Q:PQ:2×2=5 

2.1.4.PQPQPQPQPQPQ 
P:f(x)Q:f(x)PQ:f(x)f(x) 
PQPQPQPQP:2×2=5,Q:2×2=5, 

2.1.5.PQPQPQPQPQPQ 
P:a 2 +b 2 =a 2 ,Q:b=0,PQ:a 2 +b 2 =a 2 b=0 

 

2.1.1. 
P:Q:R(PQ)R 

2.1.2. 
P:QR(PQ)R 

2.1.3.PQRP:Q:R:(1)(PQ)R(2)(¬P¬Q)¬R 
(1)(2) 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值