第二章命题逻辑
数理逻辑是用数学的方法研究思维规律的一门学科。由于它使用了一套符号,简洁地表达各种推理的逻辑关系,因此,数理逻辑一般也称为符号逻辑。数理逻辑和计算机的发展有着密切的联系,它为机器证明、自动程序设计、计算机辅助设计等计算机应用和理论研究提供必要的理论基础。下面两章将介绍数理逻辑最基本的内容:命题逻辑和谓词逻辑。
§2.1命题以及逻辑联结词
2.1.1命题
语言的单位是句子,句子可以分为疑问句、祈使句、感叹句与陈述句等,其中只有陈述句具有真假意义,其它类型的句子无所谓真假。命题逻辑研究的对象是命题。所谓命题是指一句有真假意义的话。
例如,“北京是中国的首都”是命题,而且它是真的;
“长春是中国最大的城市”是命题,但它是假的。
“关门!”,“你上哪?”这张命令和问话不是命题。
需要注意的是,一个句子本身是否分辨真假与我们是否知道它的真假是两回事。也就是说,对于一个句子,有时我们可能无法判断它的真假,但这个句子本身却是有真假的。例如:
(1)1960年长春春城电影院放映了国产故事片“白毛女”。
(2)太阳系外有宇宙人。
(1)和(2)都是命题。(1)是对过去的事情进行判断,虽然我们一时很难分辨它的真假,但这句话本身是有其真假的。对于(2),目前人们尚无法确定其真假,但从事物的本质而论,句子本身是可分辨真假的,这类语句也称为命题。命题用大写英文字母
P,Q,⋯,P 1 ,P 2 ,⋯
, 表示。如果一个命题是真的,就说它的真值是1;如果一个命题是假的,就说它的真值是0。我们也用1代表一个抽象的真命题,用0代表一个抽象的假命题。
2.1.2逻辑联结词
当我们用命题组成新的句子的时候,使用了语法中的逻辑联结词,下面我们介绍五种逻辑联结词(或称命题的五种运算)。我们将看到,它们和自然语言里的联结词是有所不同的,它们是自然语言里的联结词的逻辑抽象。若干个原子命题通过命题逻辑联结词而构成的新命题称为复合命题。
定义2.1.1.设P是一个命题,命题“P是不对的”称为P的否定。记以¬P,读作非P。¬P是真的当且仅当P是假的。
例如:P:上海是一个城市。¬P:上海不是一个城市。
定义2.1.2.设P,Q是两个命题,命题“P或者Q”称为P,Q的吸取,记以P∨Q,读作P或Q。规定P∨Q是真的当且仅当P,Q中至少有一个是真的。
例如,P:今天下雨,Q:今天刮风,P∨Q:今天下雨或刮风。
自然语言中的“或者”一词有不可兼得意思。例如,“我到北京出差或者到广州取度假”表示的是二者只能居其一,不会同时成立。按照联结词“∨”的定义,当P,Q都为真时,P∨Q也为真,因此“∨”所表示的“或”是“可兼或”,对于“不可兼或”,我们不可以用“∨”来表示。
定义2.1.3.设P,Q是两个命题,命题“P并且Q”称P,Q的合取,记以P∧Q,读作P且Q。规定P∧Q是真的当且仅当P和Q都是真的。
例如,P:2×2=5,Q:雪是黑的,P∧Q:2×2=5并且雪是黑的。
定义2.1.4.设P,Q是两个命题,命题“如果P,则Q”称为P蕴涵Q,记以P→Q。规定P→Q是假的当且仅当P是真的而Q是假的。
例如,P:f(x)是可微的,Q:f(x)是连续的,P→Q:若f(x)是可微的,则f(x)是连续的。
有定义知,当P是真的,Q是真的时,命题P→Q时真的。这和日常生活中语言“如果⋯则⋯”的意思是一致的。但如果P是假的,则不管Q是真的还是假的,命题“如果P,则Q”在命题逻辑中都被认为是真命题。例如:P:2×2=5,Q:雪是黑的,于是,命题“如果2×2=5,则雪是黑的”是真命题。这和人们日常生活中语言不一致。
定义2.1.5.设P,Q是两个命题,命题“P当且仅当Q”称为P等价Q,记以P↔Q。规定,P↔Q是真的当且仅当P,Q或者都是真的,或者都是假的。
例如,P:a 2 +b 2 =a 2 ,Q:b=0,P↔Q:a 2 +b 2 =a 2 当且仅当b=0。
利用上面介绍的五种逻辑联结词,我们可以把许多日常语句符号化。
例2.1.1.如果你走路时看书,那么你一定会成为近视眼。
令,P:你走路;Q:你看书;R:你是近视眼。于是,上述语句可表示为(P∧Q)→R。
例2.1.2.除非他以书面或口头的方式正式通知我,否则我不参加明天的会议。
令:P:他书面通知我;Q:他口头通知我;R:我参加明天的会议。于是,上述语句可表示为(P∨Q)↔R。
例2.1.3.设P,Q,R的意义如下:P:苹果是甜的;Q:苹果是红的;R:我买苹果。试用日常语言附属下述复合命题:(1)(P∧Q)→R(2)(¬P∧¬Q)→¬R
解:(1)如果苹果甜且红,那么我买。(2)我没买苹果,因为苹果不甜也不红。
在自然语言中,用联结词链接的两个陈述句在内容上总是存在某种联系,而在数理逻辑中,关心的只是复合命题与构成复合命题的各原子命题之间的真值关系,即抽象的逻辑关系,并不关心各语句的具体内容。因此,内容上毫无联系的两个命题也能组成具有确定真值的复合命题。