命题连接词

命题逻辑主要探讨陈述句的逻辑结构,涉及命题联结词如‘并且’、‘或者’、‘如果…那么…’等。复合句由简单句通过联结词构成,其中的子句和直接子句影响整个句子的真值。主联结词是复合句中最后使用的联结词,决定复合句的逻辑关系。真值函数联结词如‘并非’、‘蕴含’等,其真值由子句的真值决定,而非真值函数联结词如‘认为’则不然。符号化论说将逻辑表达式转换为形式语言,便于分析和推导。
摘要由CSDN通过智能技术生成

命题逻辑(propositional logic) 也被称为 语句逻辑(sentential logic),是从连接词和复合语句的角度讨论逻辑蕴含,可演绎性和一致性。这意味着我们会忽略语句中的其他的元素主语、谓词和量词等。
命题和语句是有区别的,但暂时不区分,命题、语句或句子都是指的同样的东西。

论说的前提和结论都是由陈述句构成。
对于陈述句,我们给出简单的定义:

对于任何一个语句 ϕ \phi ϕ,如果我们问下列问题是有意义的,

  • ϕ \phi ϕ是真的吗?
  • ϕ \phi ϕ是假的吗?
    那么我们就称 ϕ \phi ϕ为陈述句。

对于书中的句子:

  • 讨论的句子只限于陈述句
  • 讨论的陈述句只限于非真即假的陈述句

如果一个句子是真的,那么我们说该句子的真值;如果一个句子是假的,我们说该句子的真值
统称真值(true-value)
用这个概念重复上两个预设,那么有

  • 讨论的语句都有真值
  • 讨论的真值只有两个

联结词和符号语句

联结词

命题联结词(propositional connectives),也被称为语句联结词(sentenial connectives),又称命题算子或者语句算子(propositional/sentential operators)。通常我们简称命题联结词为联结词
直观来讲,他们是带空格的表达式,使得陈述句填入这些空格的结果总是陈述句。
例如:

  • ----,并且----
  • (虽然)----,但是,----
  • (或者)----,或者----
  • 并非----
  • 因为----,所以----
  • 可以想象----
  • 张三相信----
  • 李四认为----
  • 政客们喜欢说----

对于自然数 n > 0 n>0 n>0,如果一个联结词有 n 个空格,我们通常就说他是 n元联结词
联结词实际上是陈述句集合上的某种函数(运算):
对于每个这样的 n 元函数,一旦给定有序的 n 个陈述句作为其自变量的取值,该函数的值是一个唯一的陈述句,即由依次填入联结词的空格列所得到的句子。

复合句和简单句

复合句(compound sentence) 是用到联结词的陈述句,不是复合句的陈述句叫 简单句(simple sentence)

复合句的子句

简单来说,复合句中被联结的那些句子就是真子句;而简单句没有真子句,简单句的部分不能是真子句。

更准确来描述:

ϕ \phi ϕ ψ \psi ψ 都是完整的句子。 ϕ \phi ϕ ψ \psi ψ真子句(proper subsentence),如果以空格中替换 ϕ \phi ϕ 中的 ψ \psi ψ,结果是一个联结词。
ψ \psi ψ ϕ \phi ϕ子句(subsentence),如果 ψ \psi ψ ϕ \phi ϕ 的真子句或者 ϕ = ψ \phi = \psi ϕ=ψ

定义有点类似子集和真子集的关系。

举个例子:

因为张三认为李四知道王五是张三的哥哥,所以张三没有对李四提起这件事。

在这个句子 ϕ \phi ϕ中,我们去掉语句 ψ \psi ψ:“张三认为李四知道王五是张三的哥哥”,得到的是“因为——”,这是一个逻辑联结词,所以我们认为这是一个“张三认为李四知道王五是张三的哥哥”是 ϕ \phi ϕ的真子句。而”李四知道王五是张三的哥哥“这句话又是 ψ \psi ψ的真子句。

主联结词和直接子句

主联结词

一个联结词可以在一个句子中多次出现。如果他在某个复合句中的某个出现不是在该句的任何子句中,那么我们把他称作这个复合句的主联结词(major connective/main operator)

如果把复合句看作是多个简单句由逻辑连接词一步一步构造而来的话,那么我们在此过程中的最后一两步使用的联结词就是主联结词。

因为张三认为李四知道王五是张三的哥哥,所以张三没有对李四提起这件事。

这个例子中,我们可以先把最后两个句子提出来:

张三认为李四知道王五是张三的哥哥
张三没有对李四提起这件事

之后,我们用联结词"因为——,所以——”把这两个句子连接了起来,所以这个复合句的主联结词就是"因为——,所以——”。

直接子句

联结词可以在一个复合句中出现多次,一个句子也可以作为子句在复合句中出现多次。
比如:

实数比有理数多,但张三不相信实数比有理数多。

中,”实数比有理数多“就出现了多次。

ψ \psi ψ ϕ \phi ϕ 的真子句。如果 ψ \psi ψ ϕ \phi ϕ 中的某个出现不是在 ϕ \phi ϕ 的任何其他真子句中的出现,那么 ψ \psi ψ 被称为 ϕ \phi ϕ直接子句。换句话说,就是主联结词联结的那些句子,在上面的例子中就是第一次出现的”实数比有理数多“和”张三不相信实数比有理数多“。

一个复合句的主联结词可能在复合句中出现多次,但使得他称为该句主联结词的出现,一定连接了该句的全部直接子句。

真值函数联结词和非真值函数联结词

对于任意联结词,如果以它为主联结词的复合句的真值完全由该句的直接子句的真值决定,那么这个联结词就是真值联结词(truth-functional connective)。反之,则是非真值联结词(non-truth-functional connective)

真值联结词:

  • 并非—— (it is not the case that——)
  • 如果——,那么——(if——,then——)
  • ——当且仅当——(——if and only if——)

  • 非真值联结词
  • 因为——,所以——
  • 之所以——,是因为——
  • 张三认为

要说明一个联结词不是真值联结词,可以构造以它为主联结词的复合句,并且满足下列条件:

  • 这两个复合句真值不同
  • 这两个复合句中对应的直接子句的真值相同

比如:

张三相信地球围绕太阳转。
张三相信2+2=4。

”地球围绕太阳转“和”2+2=4“都是真的,但张三完全可以相信2+2=4,但不相信地球围绕太阳转。

为什么这种方式可以说明一个联结词是不是真值联结词?因为这不符合真值联结词的定义,即这个句子的真值不完全由其子句决定。

除非特别说明,我们只讨论真值联结词。

符号化

名称符号相关联结词
否定 ∼ \sim 并非,并不,不 …
合取 ∧ \wedge 并且,但是,可是,然而,且,而,却,不是-而是…
析取 ∨ \vee 或、或者、或者-或者,要么-要么,不是-就是,除非…
蕴含 → \rightarrow 如果,如果-那么,若-则,只要,一旦…
等值 ↔ \leftrightarrow 当且仅当,等价于…

论说的符号化

即将论说化成下面的形式:
p → q ∼ q ∴ ∼ p \begin{gathered} &p \rightarrow q \\ &\sim q \\ \hline \\ &\therefore \sim p\end{gathered} pqqp

形式

通常,人们把一个论说的符号化结果称为该论说的形式(form),而事实上符号化也常被称为形式化(formalization)

符号化不是通过机械的”字段/符号“替换得到的,它依赖于某种逻辑分析的理论。

命题逻辑的基本语法

命题逻辑的形式语言通常由两部分组成:

  • 初始符号(primitive symbols),无定义的符号
  • 公式(formulas, formulae),由符号根据一定的形成规则形成

形式语言 L 0 \mathscr{L}_{0} L0

我们称 L 0 \mathscr{L}_{0} L0 的初始符号为 L 0 \mathscr{L}_{0} L0 -符号。 L 0 \mathscr{L}_{0} L0 -符号有三种:

  • 命题变号(非逻辑符号、命题变项、命题变元): p 0 , p 1 , p 2 , ⋯ p_0,p_1,p_2,\cdots p0,p1,p2,
  • 联结词(逻辑符号): ∼ , ∨ , ∧ , → , ↔ ( ∼ \sim, \vee, \wedge, \rightarrow, \leftrightarrow(\sim ,,,,( 为一元联结词,其余为二元联结词);
  • 左右括号(非必须,辅助符号):”(“和”)“

我们称由 L 0 \mathscr{L}_0 L0-符号根据以下规则生成的符号串为 L 0 \mathscr{L}_0 L0公式:

  • L 0 \mathscr{L}_{0} L0的所有命题变号都是 L 0 \mathscr{L}_{0} L0-公式
  • 如果 ϕ \phi ϕ L 0 \mathscr{L}_{0} L0-公式,则 ∼ ϕ \sim \phi ϕ也是 L 0 \mathscr{L}_{0} L0-公式。
  • 如果 ϕ \phi ϕ ψ \psi ψ L 0 \mathscr{L}_{0} L0-公式,那么 ( ϕ ∨ ψ ) , ( ϕ ∧ ψ ) , ( ϕ → ψ ) (\phi \vee \psi),(\phi \wedge \psi),(\phi \rightarrow \psi) (ϕψ),(ϕψ),(ϕψ) ( ϕ ↔ ψ ) (\phi \leftrightarrow \psi) (ϕψ)都是 L 0 \mathscr{L}_{0} L0-公式
  • 只有这些是 L 0 \mathscr{L}_{0} L0-公式

一般这种都是递归的定义,比如 ϕ \phi ϕ也可以是多个逻辑变量合取或析取起来的结果。

一般用p,q,r,s表示命题变元,用小写希腊字母 ϕ , ψ , χ , θ , λ \phi,\psi,\chi,\theta,\lambda ϕ,ψ,χ,θ,λ来表示 L 0 \mathscr{L}_{0} L0-公式,用大写希腊字母 Δ , Γ \Delta,\Gamma Δ,Γ来表示 L 0 \mathscr{L}_{0} L0-公式集合。

对象语言和元语言

对象语言(object language),是作为我们讨论对象的语言。
元语言(metalanguage),是讨论中使用的语言。

比如这里我们讨论的对象语言就是 L 0 \mathscr{L}_{0} L0语言,而我们讨论 L 0 \mathscr{L}_{0} L0语言所用的元语言是中文。

子公式和主联结词

公式的子公式(subformula)是出现在该公式中的公式(包括他自己)。
如果 ψ \psi ψ ϕ \phi ϕ的子公式,并且 ψ ≠ ϕ \psi \neq \phi ψ=ϕ,那么 ψ \psi ψ ϕ \phi ϕ真子公式(proper subformula)。一个公式的主联结词是该公式构造过程中最后一步使用的联结词,而他的直接子公式就是这一步主联结词联结的公式。

  • 对每个命题变号 p , p p, p p,p p p p 的子公式;
  • ϕ \phi ϕ 的所有子公式和 ∼ ϕ \sim \phi ϕ 都是 ∼ ϕ \sim \phi ϕ 的子公式, ϕ \phi ϕ ∼ ϕ \sim \phi ϕ 的直接子公 式,且 ∼ \sim ∼ ϕ \sim \phi ϕ 的主联结词;
  • ϕ \phi ϕ ψ \psi ψ 的所有子公式和 ( ϕ ∨ ψ ) (\phi \vee \psi) (ϕψ) 都是 * ( ϕ ∨ ψ ) (\phi \vee \psi) (ϕψ) 的子公式, ϕ \phi ϕ ψ \psi ψ ( ϕ ∨ ψ ) (\phi \vee \psi) (ϕψ) 的直接子公式, 且 ∨ \vee ( ϕ ∨ ψ ) (\phi \vee \psi) (ϕψ) 的主联结词;
  • ϕ \phi ϕ ψ \psi ψ 的所有子公式和 ( ϕ ∧ ψ ) (\phi \wedge \psi) (ϕψ) 都是 ( ϕ ∧ ψ ) (\phi \wedge \psi) (ϕψ) 的子公式, ϕ \phi ϕ ψ \psi ψ ( ϕ ∧ ψ ) (\phi \wedge \psi) (ϕψ) 的直接子公式, 且 ∧ \wedge ( ϕ ∧ ψ ) (\phi \wedge \psi) (ϕψ) 的主联结词;
  • ϕ \phi ϕ ψ \psi ψ 的所有子公式和 ( ϕ → ψ ) (\phi \rightarrow \psi) (ϕψ) 都是 ( ϕ → ψ ) (\phi \rightarrow \psi) (ϕψ) 的子公式, ϕ \phi ϕ ψ \psi ψ ( ϕ → ψ ) (\phi \rightarrow \psi) (ϕψ) 的直接子公式, 且 → \rightarrow ( ϕ → ψ ) (\phi \rightarrow \psi) (ϕψ) 的主联结词;
  • ϕ \phi ϕ ψ \psi ψ 的所有子公式和 ( ϕ ↔ ψ ) (\phi \leftrightarrow \psi) (ϕψ) 都是 ( ϕ ↔ ψ ) (\phi \leftrightarrow \psi) (ϕψ) 的子公式, ϕ \phi ϕ ψ \psi ψ ( ϕ ↔ ψ ) (\phi \leftrightarrow \psi) (ϕψ) 的直接子公式, 且 ↔ \leftrightarrow ( ϕ ↔ ψ ) (\phi \leftrightarrow \psi) (ϕψ) 的主联结词。

以相同主联结词为公式分类,我们公式有下列类名称:

  • 命题变号称为 L 0 \mathscr{L}_{0} L0 -原子公式 (atomic formula);
  • 形如 ∼ ϕ \sim \phi ϕ 的公式 (即以 ∼ \sim 为主联结词的公式) 称为否定式 (negation), 俗称“ ϕ \phi ϕ 的否定";
  • 形如 ( ϕ ∨ ψ ) (\phi \vee \psi) (ϕψ) 的公式称为析取式 (disjunction),俗称 " ϕ \phi ϕ ψ \psi ψ 的析 取", ϕ \phi ϕ ψ \psi ψ 称为它的析取支 (disjuncts);
  • 形如 ( ϕ ∧ ψ ) (\phi \wedge \psi) (ϕψ) 的公式称为合取式(conjunction), 俗称 “ ϕ \phi ϕ ψ \psi ψ 的合 取", ϕ \phi ϕ ψ \psi ψ 称为它的合取支 (conjuncts);
  • 形如 ( ϕ → ψ ) (\phi \rightarrow \psi) (ϕψ) 的公式称为蕴涵式 (implication) 或条件句 (conditional), ϕ \phi ϕ 称为它的前件 (antecedent), ψ \psi ψ 称为它的后件 (consequent);
  • 形如 ( ϕ ↔ ψ ) (\phi \leftrightarrow \psi) (ϕψ) 的公式称为等值式(equivalence), 亦称双 (向) 蕴涵式 ( ( ( bi-implication ) ) ) 或双 (向) 条件句 (biconditional)。

括号的省略

我们按照下列规则省略一些括号:

  • 最外层的括号可以省略
  • 假定 ∧ , ∨ \wedge,\vee ,的联结比 → , ↔ \rightarrow,\leftrightarrow ,优先。

语法和语义

语法(syntax) 理论有时叫做 语形 理论,涉及符号组合和公式的结构以及公式在结构或形式方面的各种关系,唯独不涉及符号和公式的意义。公式变换,公式序列的生成都属于语法理论。

语义(semantics) 则讨论符号和公式的意义。

符号一般指没有被赋予意义的东西。一旦赋予符号意义,就进入了语义理论,针对符号和公式意义的讨论,包括公式的真假,都属于语义讨论。

  • 1 + 1 = 2
  • one plus one is two
  • 一加一等于二

这是不同语言的句子,不同语言有不同的符号和形成规则。所以,这些句子从语法上来说是不相同的,但是根据常规解释,他们的意思是相同的,所以在语义上是相同的。

再比如:

  • 张三打了李四一拳
  • 李四被张三打了一拳

两个句子从语法结构上来说并不相同,前者主语是张三,而后者则是李四,但二者的从意思上来说是相同的,也就是语义相同。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值