量子计算云平台实验简介

量 子 计 算 云 平 台 实 验 简 介 \color{blue}{量子计算云平台实验简介}

量子计算云平台提供了量子比特的逻辑运算服务。可以使用真实量子芯片运行或者使用模拟器运行。

01 一 个 简 单 的 实 验 操 作 \color{blue}{01 一个简单的实验操作} 01

量子计算云平台实验操作界面如下:
1.输入实验名称,选择[使用真实量子芯片运行]。
输入实验名称

2.设计算法。拖放对应的比特门到运行线路上。
量子计算云平台实验操作界面

3.点击[运行],设置[Number of shots]参数。查看运行结果。
实验运行结果

4.查看实验数据。点击下载数据,查看.xls类型实验数据。
实验数据

02 单 量 子 比 特 门 \color{blue}{02 单量子比特门} 02

真实量子芯片提供16个单量子比特门。

02.01 X 非 门 ( P a u l i − X 门 ) \color{blue}{02.01 X非门(Pauli-X门)} 02.01X(PauliX)

非门把状态 α ∣ 0 ⟩ + β ∣ 1 ⟩ \alpha |0 \rangle + \beta|1 \rangle α0+β1 ∣ 0 ⟩ |0 \rangle 0 ∣ 1 ⟩ |1 \rangle 1 为止互换变到新的状态 α ∣ a ⟩ + β ∣ 0 ⟩ \alpha | a \rangle + \beta | 0 \rangle αa+β0。X= σ x \sigma_x σx
量子非门运算可以用矩阵 X = [ 0 1 1 0 ] X=\begin{bmatrix}0 & 1 \\ 1 & 0 \end{bmatrix} X=[0110] 表示。
X门的作用是对量子比特的逻辑非操作。即 ∣ 0 ⟩ → ∣ 1 ⟩ |0 \rangle \to | 1 \rangle 01 ∣ 1 ⟩ → ∣ 0 ⟩ |1 \rangle \to | 0 \rangle 10。量子比特在X门作用下的结果为 X ∣ ψ ⟩ = b ∣ 0 ⟩ + a ∣ 1 ⟩ X | \psi \rangle = b | 0 \rangle + a | 1 \rangle Xψ=b0+a1

02.02 Y 门 ( P a u l i − Y 门 ) \color{blue}{02.02 Y门(Pauli-Y门)} 02.02Y(PauliY)

Y门将 ∣ 0 ⟩ | 0 \rangle 0变为 i ∣ 1 ⟩ i | 1 \rangle i1, 将 ∣ 1 ⟩ |1 \rangle 1变为 − i ∣ 0 ⟩ -i | 0 \rangle i0, 从而将 α ∣ 0 ⟩ + β ∣ 1 ⟩ \alpha | 0 \rangle + \beta | 1 \rangle α0+β1变为 i α ∣ 1 ⟩ − i β ∣ 0 ⟩ i \alpha | 1 \rangle - i \beta | 0 \rangle iα1iβ0 Y = σ y 。 Y = \sigma_y。 Y=σy
Pauli-Y门对应的算子为(i为虚数单位) Y = [ 0 − i i 0 ] Y=\begin{bmatrix}0 & -i \\ i & 0 \end{bmatrix} Y=[0ii0]
Y门的作用是对量子比特作逻辑非操作,改变 ∣ 0 ⟩ | 0 \rangle 0基的方向,同时对量子比特的相位调整 π / 2 \pi / 2 π/2。因此量子比特 ∣ ψ ⟩ | \psi \rangle ψ经过Y门后输出的结果为 Y ∣ ψ ⟩ = e i π 2 ( α ∣ 1 ⟩ − β ∣ 0 ⟩ ) Y | \psi \rangle = e^{\frac{i \pi}{2}}(\alpha | 1 \rangle - \beta | 0 \rangle) Yψ=e2iπ(α1β0)

02.03 Z 门 ( P a u l i − Z 门 ) \color{blue}{02.03 Z门(Pauli-Z门)} 02.03Z(PauliZ)

Z门对 ∣ 0 ⟩ |0 \rangle 0不进行任何变化,将 ∣ 1 ⟩ |1 \rangle 1变为 − ∣ 1 ⟩ -|1 \rangle 1,从而将 α ∣ 0 ⟩ + β ∣ 1 ⟩ \alpha | 0 \rangle + \beta | 1 \rangle α0+β1变为 α ∣ 0 ⟩ − β ∣ 1 ⟩ \alpha | 0 \rangle - \beta | 1 \rangle α0β1,实现符号翻转。 Z = σ z Z = \sigma_z Z=σz
Z门对应的算子为 Z = [ 1 0 0 − 1 ] Z=\begin{bmatrix}1 & 0 \\ 0 & -1 \end{bmatrix} Z=[1001]
Z门的作用是对量子比特作相位变换,即改变 ∣ 1 ⟩ | 1 \rangle 1即的方向,因此量子比特 ∣ ψ ⟩ | \psi \rangle ψ经过Z门后的输出结果为 Z ∣ ψ ⟩ = α ∣ 0 ⟩ − β ∣ 1 ⟩ Z| \psi \rangle = \alpha | 0 \rangle - \beta | 1 \rangle Zψ=α0β1。这相当于绕 ∣ 1 ⟩ | 1 \rangle 1基顺时针旋转 π / 2 \pi / 2 π/2

σ x , σ y , σ z 与 2 × 2 的 单 位 算 子 I 一 起 构 成 2 × 2 矩 阵 的 一 个 完 备 集 。 \sigma_x, \sigma_y, \sigma_z与 2 \times 2 的单位算子I一起构成 2 \times 2 矩阵的一个完备集。 σx,σy,σz2×2I2×2

02.04 H 门 ( H a d a m a r d 门 ) \color{blue}{02.04 H门(Hadamard门)} 02.04H(Hadamard)

Hadamard门把 ∣ 0 ⟩ | 0 \rangle 0变为 ∣ 0 ⟩ + ∣ 1 ⟩ 2 \dfrac{| 0 \rangle + | 1 \rangle}{\sqrt{2}} 2 0+1,把 ∣ 1 ⟩ | 1 \rangle 1变为 ∣ 0 ⟩ − ∣ 1 ⟩ 2 \dfrac{|0 \rangle - | 1 \rangle}{\sqrt{2}} 2 01。由于 H 2 = I H^2 = I H2=I,所以经过两次Hadamard门等于没有进行任何操作。
Hadamard门对应的酉算子为 H = [ 1 2 1 2 1 2 − 1 2 ] 。 H=\begin{bmatrix}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}。 H=[2 12 12 12 1]
H门的作用是对量子比特作如下变换:
H ∣ 0 ⟩ = ∣ + ⟩ = 1 2 ( ∣ 0 ⟩ + ∣ 1 ⟩ ) H|0 \rangle = | + \rangle = \dfrac{1}{\sqrt{2}}(|0 \rangle + | 1 \rangle) H0=+=2 1(0+1)
H ∣ 1 ⟩ = ∣ − ⟩ = 1 2 ( ∣ 0 ⟩ − ∣ 1 ⟩ ) H|1 \rangle = | - \rangle = \dfrac{1}{\sqrt{2}}(|0 \rangle - | 1 \rangle) H1==2 1(01)
用两个相同的H门依次对输入的量子比特操作得到的结果是量子比特本身。

02.05 S 门 ( 相 位 门 ) \color{blue}{02.05 S门(相位门)} 02.05S()

S门将 α ∣ 0 ⟩ + β ∣ 1 ⟩ \alpha | 0 \rangle + \beta | 1 \rangle α0+β1变为 α ∣ 0 ⟩ + i β ∣ 1 ⟩ \alpha | 0 \rangle + i \beta | 1 \rangle α0+iβ1,。
S门酉算子为 S = [ 1 0 0 i ] S=\begin{bmatrix}1 & 0 \\ 0 & i \end{bmatrix} S=[100i]
相位门的作用是使量子比特的相位改变 π / 2 \pi / 2 π/2。因此量子比特 ∣ ψ ⟩ | \psi \rangle ψ经过相位门后输出的结果为 S ∣ ψ ⟩ = α ∣ 0 ⟩ + i β ∣ 1 ⟩ S| \psi \rangle = \alpha | 0 \rangle + i \beta | 1 \rangle Sψ=α0+iβ1。这相当于绕 ∣ 1 ⟩ | 1 \rangle 1 基逆时针旋转 π / 2 \pi / 2 π/2

02.06 S + 门 \color{blue}{02.06 S^{+}门} 02.06S+

S + = [ 1 0 0 − i ] S^{+}=\begin{bmatrix}1 & 0 \\ 0 & -i \end{bmatrix} S+=[100i]

02.07 T 门 ( π / 8 门 ) \color{blue}{02.07 T门(\pi / 8 门)} 02.07T(π/8)

T门对应算子为 T = [ 1 0 0 1 + i 2 ] T=\begin{bmatrix}1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{bmatrix} T=[1002 1+i],或 T = [ 1 0 0 e i π 4 ] T=\begin{bmatrix}1 & 0 \\ 0 & e^{\frac{i \pi}{4}} \end{bmatrix} T=[100e4iπ]
量子比特 ∣ ψ ⟩ | \psi \rangle ψ 经过 π / 8 \pi / 8 π/8 门后输出的结果为 T ∣ ψ ⟩ = α ∣ 0 ⟩ + e i π 2 β ∣ 1 ⟩ T | \psi \rangle = \alpha | 0 \rangle + e^{\frac{i \pi}{2}} \beta | 1 \rangle Tψ=α0+e2iπβ1 π / 8 \pi / 8 π/8门实际上是对量子比特绕 ∣ 1 ⟩ | 1 \rangle 1基逆时针旋转 π / 4 \pi / 4 π/4

02.08 T + 门 \color{blue}{02.08 T^{+}门} 02.08T+

T + = [ 1 0 0 1 + i 2 ] T^{+}=\begin{bmatrix}1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{bmatrix} T+=[1002 1+i]

02.09 R x 门 \color{blue}{02.09 R_x门} 02.09Rx

R x = [ cos ⁡ θ 2 − i sin ⁡ θ 2 − i sin ⁡ θ 2 cos ⁡ θ 2 ] R_x=\begin{bmatrix}\cos{\frac{\theta}{2}} & -i \sin{\frac{\theta}{2}} \\ -i \sin{\frac{\theta}{2}} & \cos{\frac{\theta}{2}} \end{bmatrix} Rx=[cos2θisin2θisin2θcos2θ]

02.10 R y 门 \color{blue}{02.10 R_y门} 02.10Ry

R y = [ cos ⁡ θ 2 − sin ⁡ θ 2 sin ⁡ θ 2 cos ⁡ θ 2 ] R_y=\begin{bmatrix}\cos{\frac{\theta}{2}} & -\sin{\frac{\theta}{2}} \\ \sin{\frac{\theta}{2}} & \cos{\frac{\theta}{2}} \end{bmatrix} Ry=[cos2θsin2θsin2θcos2θ]

02.11 R z 门 \color{blue}{02.11 R_z门} 02.11Rz

R z = [ 1 0 0 e i θ ] R_z=\begin{bmatrix}1 & 0 \\ 0 & e^{i \theta} \end{bmatrix} Rz=[100eiθ]

02.12 R x y 门 \color{blue}{02.12 R_{xy}门} 02.12Rxy

R x y = [ cos ⁡ ( β / 2 ) − i e − i α sin ⁡ ( β / 2 ) − i e i α sin ⁡ ( β / 2 ) cos ⁡ ( β / 2 ) ] R_{xy}=\begin{bmatrix}\cos(\beta/2) & -ie^{-i\alpha} \sin(\beta/2) \\ -ie^{i\alpha} \sin(\beta/2) & \cos(\beta/2) \end{bmatrix} Rxy=[cos(β/2)ieiαsin(β/2)ieiαsin(β/2)cos(β/2)]

02.13 X / 2 门 \color{blue}{02.13 X/2门} 02.13X/2

X 2 = [ 1 2 − i 2 − i 2 1 2 ] \dfrac{X}{2}=\begin{bmatrix}\frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} 2X=[2 12 i2 i2 1]

02.14 − X / 2 门 \color{blue}{02.14 -X/2门} 02.14X/2

− X 2 = [ 1 2 i 2 i 2 1 2 ] -\dfrac{X}{2}=\begin{bmatrix}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} 2X=[2 12 i2 i2 1]

02.15 − Y / 2 门 \color{blue}{02.15 -Y/2门} 02.15Y/2

− Y 2 = [ 1 2 − 1 2 1 2 1 2 ] -\dfrac{Y}{2}=\begin{bmatrix}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} 2Y=[2 12 12 12 1]

02.16 − Y / 2 门 \color{blue}{02.16 -Y/2门} 02.16Y/2

− Y 2 = [ 1 2 1 2 − 1 2 1 2 ] -\dfrac{Y}{2}=\begin{bmatrix}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} 2Y=[2 12 12 12 1]

03 两 比 特 门 \color{blue}{03 两比特门} 03

03.01 C Z \color{blue}{03.01 CZ} 03.01CZ

[ 1 1 1 − 1 ] \begin{bmatrix}1 & & & \\ & 1 & & \\ & & 1 & \\ & & & -1 \end{bmatrix} 1111

04 参 数 \color{blue}{04 参数} 04

可以查看单比特门保真度、CZ门保真度、Qubit相关参数、系统状态四类参数。
量子比特参数1
量子比特参数2

05 量 子 力 学 的 几 个 基 本 假 设 \color{blue}{05 量子力学的几个基本假设} 05

1.量子态用波函数描写:
量 子 力 学 的 第 一 条 基 本 假 设 : 微 观 粒 子 的 运 动 状 态 , 由 称 为 波 函 数 的 时 空 坐 标 函 数 Ψ ( χ ⃗ , t ) 描 述 . 量子力学的第一条基本假设:微观粒子的运动状态,由称为波函数的时空坐标函数\Psi(\vec \chi, t)描述. :,Ψ(χ ,t).
概 率 密 度 ( 单 位 体 积 中 的 几 率 ) : ρ ( χ ⃗ , t ) = ∣ Ψ ( χ ⃗ , t ) ∣ 2 概率密度(单位体积中的几率): \rho(\vec \chi, t) = |\Psi(\vec \chi, t)|^2 ():ρ(χ ,t)=Ψ(χ ,t)2
D i r a c 符 号 记 为 : ρ ( χ ⃗ , t ) = ⟨ Ψ ( χ ⃗ , t ) ∣ Ψ ( χ ⃗ , t ) ⟩ Dirac符号记为: \rho(\vec \chi, t) = \langle \Psi(\vec \chi, t) | \Psi(\vec \chi, t) \rangle Dirac:ρ(χ ,t)=Ψ(χ ,t)Ψ(χ ,t)

  1. 量子态叠加原理:
    量 子 力 学 的 第 二 条 基 本 假 设 : 量 子 态 叠 加 原 理 : 对 于 一 个 量 子 系 统 , 若 系 统 可 以 处 在 波 函 数 Ψ 1 , Ψ 2 描 述 的 状 态 中 , Ψ 1 , Ψ 2 的 线 性 叠 加 态 Ψ = c 1 ψ 1 + c 2 ψ 2 也 是 系 统 的 一 个 可 能 态 . 量子力学的第二条基本假设:量子态叠加原理:对于一个量子系统,若系统可以处在波函数\\\\ \Psi_1, \Psi_2描述的状态中, \Psi_1, \Psi_2的线性叠加态 \Psi = c_1 \psi_1 + c_2 \psi_2 也是系统的一个可能态. ::,Ψ1,Ψ2,Ψ1,Ψ2线Ψ=c1ψ1+c2ψ2.

3.薛定谔方程:
量 子 力 学 的 第 三 条 基 本 假 设 : 孤 立 量 子 系 统 态 矢 量 Ψ 随 时 间 的 演 化 遵 从 S c h r o ¨ d i n g e r 方 程 量子力学的第三条基本假设:孤立量子系统态矢量\Psi随时间的演化遵从Schr \ddot odinger方程 :ΨSchro¨dinger
i ℏ ∂ ψ ∂ t = H ^ ψ \qquad i \hbar \dfrac{\partial \psi}{\partial t} = \hat H \psi itψ=H^ψ
式 中 : H ⃗ 是 系 统 的 H a m i l t o n 算 子 . 对 于 自 由 粒 子 , H ^ = − ℏ 2 m ∇ 2 式中: \vec H 是系统的Hamilton算子.对于自由粒子, \hat H = - \dfrac{\hbar}{2m} \nabla ^2 :H Hamilton.,H^=2m2
若 粒 子 在 势 场 U ( χ ⃗ , t ) 中 运 动 , 则 粒 子 H a m i l t o n 量 为 : H ^ = − ℏ 2 2 m ∇ 2 + U ( χ ⃗ , t ) 若粒子在势场U(\vec \chi, t)中运动, 则粒子Hamilton量为: \hat H = - \dfrac{\hbar ^2}{2m} \nabla ^2 + U(\vec \chi, t) U(χ ,t),Hamilton:H^=2m22+U(χ ,t)

4.力学量用线性Hermitian算子表示:
量 子 力 学 第 四 条 基 本 假 设 : 量 子 力 学 的 每 个 力 学 量 F 都 用 一 个 线 性 H e r m i t i a n 算 子 F ^ 表 示 . 量子力学第四条基本假设:量子力学的每个力学量F都用一个线性Hermitian算子\hat F表示. :F线HermitianF^.

5.量子测量假设:
量 子 测 量 假 设 : 测 量 力 学 量 F 只 能 得 到 表 示 力 学 量 F 的 线 性 H e r m i t i a n 算 子 F ^ 的 本 征 值 之 一 . 量子测量假设:测量力学量F只能得到表示力学量F的线性Hermitian算子\hat F的本征值之一. :FF线HermitianF^.
若 系 统 处 在 任 一 波 函 数 Ψ ( 假 设 已 归 一 化 ) 描 述 的 状 态 , 则 测 得 本 征 值 F n 的 几 率 ∣ c n ∣ 2 , 若系统处在任一波函数\Psi(假设已归一化)描述的状态, 则测得本征值F_n的几率|c_n|^2, Ψ(),Fncn2,
其 中 c n 是 Ψ 按 F ^ 的 正 交 归 一 完 备 本 征 函 数 系 { Ψ n } 展 开 的 展 开 系 数 : 其中c_n是\Psi按\hat F的正交归一完备本征函数系\lbrace \Psi_n \rbrace展开的展开系数: cnΨF^{Ψn}:
∣ ψ ⟩ = ∑ n c n ∣ ψ n ⟩ \qquad | \psi \rangle = \sum \limits_n c_n | \psi_n \rangle ψ=ncnψn
c n = ⟨ ψ n ∣ ψ ⟩ \qquad c_n = \langle \psi_n | \psi \rangle cn=ψnψ
若 测 得 的 是 本 征 值 F n , 则 系 统 在 测 量 刚 进 行 完 毕 就 处 在 由 相 应 本 征 态 Ψ n 描 述 的 状 态 . 若测得的是本征值F_n, 则系统在测量刚进行完毕就处在由相应本征态\Psi_n描述的状态. Fn,Ψn.

06 Q# 官网的几个截图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如有错误之处,欢迎批评指正。QQ群:579809480。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值