数学物理方法 15 贝塞尔函数02

§15.3 

15.3.1 

1.Bessel 
(1)J ±v (x)= k=0  (1) k k!Γ(±v+k+1) (x2 ) 2k±v (1) 
2.Neuman 
(1)N v (x)=cosvπJ v (x)J v (x)sinvπ (2) 
(2)v=n,J v (x)N v (x)vBessel线. 
:y C (x)=A v J v (x)+B v N v (x) 
vnN v (x)J v (x) =cosvπJ v (x)J v (x)sinvπJ v (x)  
=1sinvπ [cosvπJ v (x)J v (x) ] 
v=n: 
N n (x)=1π [J v (x)v (1) n J v (x)v ] v=n (3) 
N n (x)=2π J n (x)lnx2 1π  k=0 n1 (nk1)!k! (x2 ) 2kn  
1π  k=0  (1) k k!(n+k)! [ψ(k+1)+ψ(n+k+1)](x2 ) 2k+n  
ψ(1)=v=0.577216,ψ(k+1)=v+1+12 ++1k  
N n (x)nBessel;(3). 
x 2 J  ±v (x)+xJ  ±v (x)+(x 2 v 2 )J ±v (x)=0(1) 
x 2 d 2 dx 2  J v v +xddx J v v +(x 2 v 2 )J v v 2vJ v (x)=0(2) 
x 2 d 2 dx 2  J v v +xddx J v v +(x 2 v 2 )J v v 2vJ v (x)=0(3) 
[(2)(1) n (3)]1π :(vn) 
x 2 N  n (x)+xN  n (x)+(x 2 n 2 )N n (x)=0(4) 

N n (x)=1π [J v (x)v (1) n J v (x)v ] v=n (3) 

N n (x)J n (x)线; 
becausex0:J 0 (x)= k=0  (1) k (k!) 2  (x2 ) 2k 1, 
J n (x)= k=0  (1) k k!(n+k)! (x2 ) 2k+n 0,n1 
x0:N 0 (x)2π J 0 (x)lnx2 2π lnx2 , 
N n (x)(n1)!π (x2 ) n  

3.Hankel 
(1){H (1) v (x)=J v (x)+iN v (x)H (2) v (x)=J v (x)iN v (x) (4) 
(2)v=n,H (1) v (x)H (2) v (x)vBessel线. 

4. 
(1)H (1) v (x),H (2) v (x),J v (x),N v (x)线. 
(2) 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ H (1) v (x)=J v (x)+iN v (x)H (2) v (x)=J v (x)iN v (x)J v (x)=H (1) v (x)+H (2) v (x)2 N v (x)=H (1) v (x)H (2) v (x)2i   

15.3.2Bessel 

1.Bessel 
Δu+λu=0 u=R(r)Θ(θ)Φ(φ)  
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Φ  +m 2 Φ=0Φ m (φ)=A m cosmφ+B m sinmφ1sinθ ddθ (sinθdΘdθ )+[l(l+1)m 2 sin 2 θ ]Θ=0Θ(θ)=p m l (cosθ)r 2 R  +2rR  +[k 2 r 2 l(l+1)]R=0(5)  
x 2 y  +2xy  +[x 2 l(l+1)]y=0(6) 
x 2 v  +xv  +[x 2 (l+12 ) 2 ]v=0(7) 
(5)(6)(7)Bessel 

(7)v(x)=J l+12  (x),N l+12  (x),H (1) l+12  (x),H (2) l+12  (x), 
(6)y(x)=1x    J l+12  (x),1x    N l+12  (x),1x    H (1) l+12  (x),1x    H (2) l+12  (x) 

2.Bessel 
(1)⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ j l (x)=π2x  − − −   J l+12  (x)lBesseln l (x)=π2x  − − −   N l+12  (x)lNeumanh (1) l (x)=π2x  − − −   H (1) l+12  (x)h (2) l (x)=π2x  − − −   H (2) l+12  (x) lHankel  
(2)j l (x),n l (x),h (1) l (x),h (2) l (x),Bessel(6)线. 
n l (x) x=0  
(6)y c (x)=A l J l (x)+B l n l (x) 

3.Bessel 
{r 2 R  +2rR  +[k 2 r 2 l(l+1)]R=0(5)R(a)=0,x=kr,y(x)=R(r)  
{x 2 y  +2xy  +[x 2 l(l+1)]y=0(6)y(ka)=0  
(k l+12  m ) 2 =(x l+12  m a ) 2 ,R(r)=j l (x l+12 ) m a r),m=1,2, 
, a 0 j l (x l+12  m a r)j l (x (l+12 ) n a r)r 2 dr=j l n  2 δ mn  

j l n  2 =π2k (l+12 ) n  J (l+12 ) n  2 =π2k (l+12 ) n   a 0 J 2 l+12  (k l+12  n r)rdr 

15.3.3Bessel 

1.Bessel 
Δu+λu=0Δu=0 } u=R(ρ)Φ(φ)Z(z)  
⎧ ⎩ ⎨ ⎪ ⎪ Φ  +n 2 Φ=0Z  +μZ=0ρ 2 R  +ρR  +(k 2 ρ 2 n 2 )R=0(8)nBessel  
x=kρ,R(ρ)=y(x),nv,k 2 =λμ0 
x 2 y  (x)+xy  (x)+(x 2 v 2 )y(x)=0(9)nBessel 
{λμμ <0,λμμ }=k 2  
(9)x 2 y  (x)+xy  (x)(x 2 +v 2 )y(x)=0(10)Bessel 
z=ix 
z 2 y  (z)+zy  (z)+(z 2 v 2 )y(z)=0(11) 
y=J ±v (ix),N v (ix),H (1) v (ix),H (2) v (ix),Bessel 

2. 
(1){I v (x)=i v J v (ix)I v (x)=i v J v (ix) (Bessel) 
vn:y C (x)=A v I v (x)+B v I v (x) 
v=n:I n (x)=I n (x)I v (x) x=0  

(2):K v (x)=π2 I v (x)+I v (x)sinvπ (Macdona) 
(3)v=n,y C (x)=c v I v (x)+d v K v (x)K v (x) x=0  
vn:I v (x)K v (x)线; 
v=n:K n (x)=(1) n 2 [I v (x)v I v (x)v ] v=n  

15.3.4 

:N v (x)= k=0  cosvπJ v (x)J v (x)sinvπJ v (x)  
:{H (1) v (x)=J v (x)+iN v (x)H (2) v (x)=J v (x)iN v (x)  

Bessel⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ j l (x)=π2x  − − −   J l+12  (x),n l (x)=π2x  − − −   N l+12  (x),h (1) l (x)=π2x  − − −   H (1) l+12  (x),h (2) l (x)=π2x  − − −   H (2) l+12  (x)  

{I v (x)=i v J v (ix)I v (x)=i v J v (ix)  
:K v (x)=π2 I v (x)+I v (x)sinvπ  

x 2 y  (x)+xy  (x)+(x 2 v 2 )y(x)=0(9) 
y(x)=J ±v (x),N v (x),H ±v (x) 
x 2 y  +2xy  +x 2 l(l+1)]y=0(6) 
y(x)=j l (x),n l (x),h (1) l (x),h (2) l (x) 
x 2 y  (x)+xy  (x)(x 2 +v 2 )y(x)=0(10) 
y(x)=I v (x),K v (x) 

15.3.5 

1.ah,,u 0 ,. 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Δu=0,0ρa(1)u(a,z)=u 0 (2)u(ρ,0)=0(3)u(ρ,h)=0(4)  
:1)u(ρ,z)=R(ρ)Z(z) 
(1){Z  +μZ=0(5)ρ 2 R  +ρR  +(μρ 2 0)R=0(6)  
(3)Z(0)=0(7)(4)Z(h)=0(8) 

2)(5)(7)(8): 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Z  +μZ=0(5)μ=m 2 π 2 h 2  ,m=1,2,Z(0)=0(7)Z(h)=0(8)Z m (z)=c m sinmπh z  
3)ρ(6): 
μ=m 2 π 2 h 2  <0,μ=k 2 ,x=kρ,y(x)=R(ρ) 
(6)x 2 y  (x)+xy  (x)(x 2 +0)y(x)=0 
R m (ρ)=y m (x)=a m I 0 (k 0 m ρ),k 0 m =mπh ,m=1,2, 
4): 
u(ρ,z)= m=1  A m I 0 (k 0 m ρ)sinmπh z 
u 0 = m=1  A m I 0 (mπh a)sinmπh z 
A m I 0 (mπh a)=2h  π 0 u 0 sinnπh zdz=2u 0 mπ [1(1) m ] 
A 2n =0,A 2n+1 =4u 0 (2n+1)πI 0 (2n+1h πa)  
u(ρ,z)=4u 0 π  0  sin2n+1h πI 0 (2n+1h πρ)(2n+1)I 0 (2n+1h πa)  

2.a,u 0 ,,使,. 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ut DΔu=0(1)u| r=0 (2)u| r=a =0(3)u| t=0 =u 0 (4)  
:1)u(r,t)=R(r)T(t)(5) 
⎧ ⎩ ⎨ ⎪ ⎪ T  (t)+λDT(t)=0(6)r 2 R  (r)+2rR  (r)+λr 2 R(r)=0(7)R(0),R(a)=0(8)  

2)(7)(8): 
λ=k 2 =(x 0+12  m a ) 2 ,R(r)=j 0 (x 12  m a r),m=1,2, 
λ=(mπa ) 2 ,R m (r)=amπr sinmπra ,m=1,2, 

3)t(6): 
T m (t)=c m e (mπa ) 2 Dt  

4): 
u(r,t)= m=1  c m amπr sinmπra e (mπa ) 2 Dt  
u(r,0)= m=1  c m amπr sinmπra =m=1  c m j 0 (mπra )=u 0  
c m 1j (0) m  2   a 0 u 0 j 0 (x 2 m a r)r 2 dr=u 0 aj (0) m  2 mπ  π 0 rsinmπra dr=2u 0 (1) m1  

u(r,t)=2au 0 πr  m=1  (1) m1 m sinmπra e (mπa ) 2 Dt  

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值