数学物理方法 15 贝塞尔函数01

 

 
: 
Δu+λu=0Δu=0 } u=R(r)Φ(φ)Z(z)  
Φ  +n 2 Φ=0Φ n (φ)=A n cosnφ+B n sinnφ 
Z  +μZ=0Z(z)=c 1 e kz +d 2 e kz (μ=k 2 ) 
ρ 2 R  +ρR  +(k 2 ρ 2 n 2 )R=0R(ρ)=? 
x=kρ,R(ρ)=y(x),k 2 =λμ0 
x 2 y  (x)+xy  (x)+(x 2 n 2 )y(x)=0y(x)? 

§15.1Bessel 

线2 
:W  (z)+p(z)W  (z)+q(z)W(z)=0() 
z 0 ,z 0 p(z)q(z),z 0 p(z)q(z),z 0  
z=z 0 0<|zz 0 |<R, 
W(z)=(zz 0 ) ρ  k=0  C k (zz 0 ) k () 
.()(),便 
ρ,ρ 1 ,ρ 2 (ρ 1 >ρ 2 ), 
 
W  (z)+p(z)W  (z)+q(z)W(z)=0() 
线: 
W 1 (z)=(zz 0 ) ρ 1   k=0  c k (zz 0 ) k  
W 2 (z)=⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ (zz 0 ) ρ 2   k=0  d k (zz 0 ) k ,ρ 1 ρ 2 aw 1 (z)ln(zz 0 )+(zz 0 ) ρ 2   k=0  d  k (zz 0 ) k ,ρ 1 ρ 2 =  

15.1.1Bessel 

x 2 y  (x)+xy  (x)+(x 2 v 2 )y(x)=0(1)y(x)=? 
p(x)=1x ,q(x)=1(vx ) 2 x=0. 
1.y=  k=0 c k x k+ρ , 
y  = k=0  c k (k+ρ)x k+ρ1 ,y  = k=0  c k (k+ρ)(k+ρ1)x k+ρ2  
(1) k=0  [(k+ρ) 2 v 2 ]c k x k+ρ + k=0  c k x k+ρ+2 =0(2) 

2.x ρ : 
(ρ 2 v 2 )c 0 =0(c 0 0) 
:ρ 2 v 2 =0ρ 1 =v,ρ 2 =v(v>0) 

3.y 1 = k=0  c k x k+ρ 1  = k=0  c k x k+v  
(1) k=0  [(k+v) 2 v 2 ]c k x k+v + k=0  c k x k+v+2 =0 
x v :(v 2 v 2 )c 0 =0(c 0 0) 
x v+1 :[(v+1) 2 v 2 ]c 1 =0c 1 =0 
x v+k :[(v+k) 2 v 2 ]c k +c k2 =0c k =c k2 k(2v+k) (3) 
c 2 =c 0 22(v+1) ,c 3 =c 1 3(3+2v) =0 
c 4 =(1) 2 c 0 2 4 2(v+2)(v+1) ,c 5 =0 
c 2n =(1) n c 0 2 2n n!(v+n)(v+n1)(v+1) ,c 2n+1 =0 
c 2n =(1) n c 0 Γ(v+1)2 2n n!Γ(v+n+1) y 1 (x)= n=0  (1) n c 0 Γ(v+1)2 2n n!Γ(v+n+1) x 2n+v  

4.ρ=ρ 2 =v, 
y 2 (x)= n=0  (1) n c 0 Γ(v+1)2 2n n!Γ(v+n+1) x 2nv  

15.1.2 

1. 
W  (z)+p(z)W  (z)+q(z)W(z)=0() 
2.:0, 
x 2 y  (x)+xy  (x)+(x 2 v 2 )y(x)=0(1) 
x=1t  
t 2 y  (t)+ty  (t)+(1t 2  v 2 )y(t)=0(1) 
3.y 1 (x),y 2 (x)0<|x|<. 
y 1 (x)|x|<,y 2 (x)x0. 

15.1.3 

1.:y 1 (x),c 0 =12 v Γ(v+1) ,y 1 (x)=J v (x) 
v. 

y 1 (x)=J v (x)= k=0  (1) k k!Γ(v+k+1) (x2 ) 2k+v (4) 
y 2 (x)c 0 =12 v Γ(v+1) ,y 2 (x)=J v (x) 
y 2 (x)=J v (x)=  k=0 (1) k k!Γ(v+k+1) (x2 ) 2kv (5) 

2.线 
(1)vn,J v (x)J v (x)线. 
x0:J v (x)1Γ(v+1) (x2 ) v ,J v (x)1Γ(v+1) (x2 ) v  
J v (x)J v (x) Γ(v+1)Γ(v+1) (x2 ) 2v x. 
:y c (x)=c v J v (x)+d v J v (x) 
(2)v=n,J n (x)=(1) n J n (x)(6) 
J n (x)=(1) n J n (x)=J n (x) 

15.1.4 

{ρ 2 R  (ρ)+ρR  (ρ)+(k 2 ρ 2 n 2 )R(ρ)=0(7)[αR(ρ)+βR  (ρ)] ρ=a =0(8)  
1.{ρ 2 R  (ρ)+ρR  (ρ)+(k 2 ρ 2 n 2 )R(ρ)=0(9)R(a)=0(10)  
:{x 2 y  +xy  +(x 2 n 2 )y=0(9)  y| x=ka =0(10)    
(1)J n (x). 
J 0 (x)= k=0  (1) k (k!) 2  (x2 ) 2k =1(x2 ) 2 +12!  2 (x2 ) 4  
J 1 (x)= k=0  (1) k k!(k+1)! (x2 ) 2k+1 =x2 11!2! (x2 ) 3 + 
(2)J n (x)x. 
J n (x n m )=0(m=1,2,)x n m J n (x)m. 
(3)(9)(10)(9)  (10)   
:k n m =x n m a ,m=1,2, 
:y m (kρ)=J n (x n m a ρ),m=1,2,, 

2.{ρ 2 R  (ρ)+ρR  (ρ)+(k 2 ρ 2 n 2 )R(ρ)=0,ρ<a(11)R  (a)=0(12)  
J  n (x ~  n m )=0(m=1,2,)x ~  n m J  n (x)m. 
:k ~  n m =x ~  n m a ,m=1,2, 
:R m (kρ)=J n (x ~  n m a ρ),m=1,2, 

15.1.5 

1.x 2 y  (x)+xy  (x)+(x 2 v 2 )y(x)=0(1) 
y 1 (x)=J v (x)= k=0  (1) k k!Γ(v+k+1) (x2 ) 2k+v (4) 
y 2 (x)=J v (x)= k=0  (1) k k!Γ(v+k+1) (x2 ) 2kv (5) 
vn:y c (x)=c v J v (x)+d v J v (x) 
v=n:J n (x)=(1) n J n (x)(6) 

2.{ρ 2 R  (ρ)+ρR  (ρ)+(k 2 ρ 2 n 2 )R(ρ)=0(9)R(a)=0(10)  
J n (x n m )=0(m=1,2,)x n m J n (x)m. 
:k n m =x n m a ,m=1,2, 
:R m (kρ)=J n (x n m a ρ),m=1,2, 
{J n (k n m ρ)}:J n (k n 1 ρ),J n (k n 2 ρ),J n (k n 3 ρ),n 

:W  (z)+p(z)W  (z)+q(z)W(z)=0() 
z=z 0 0<|zz 0 |<R, 
W(z)=(zz 0 ) ρ  k=0  C k (zz 0 ) k () 
ρ:ρ 1 ,ρ 2 (ρ 1 >ρ 2 ),,()线: 
W 1 (z)=(zz 0 ) ρ 1   k=0  c k (zz 0 ) k  
W 2 (z)=⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ (zz 0 ) ρ 2   k=0  d k (zz 0 ) k ,ρ 1 ρ 2 aw 1 (z)ln(zz 0 )+(zz 0 ) ρ 2   k=0  d  k (zz 0 ) k ,ρ 1 ρ 2 =  

§15.2 

15.2.1 

e x2 (t1t ) = k=0  J n (x)t n (1) 

e z = k=0  1k! z k ,|z|< 
:e x2 t = l=0  1l! (x2 t) l ,|t|< 
e x2t  = m=0  1m! (x2t ) m ,|t|>0 
e x2 (t1t ) =e x2 t e x2t  = l=0  1l! (x2 t) l  m=0  1m! (x2t ) m  
= l=0   m=0  (1) m l!m! (x2 ) l+m t lm  

lm=n,l=m+n 
 l=0   m+n=0   n=m   n=   
e x2 (t1t ) = n=   m=0  (1) m (m+n)!m! (x2 ) 2m+n t n  
= n=  J n (x)t n  
J n (x)= k=0  (1) k k!(n+k)! (x2 ) 2k+n  

f(z)= k=  c k (zb) k ,c k =12πi  l f(z)(zb) k+1  dz 

e x2 (t1t ) = n=  J n (x)t n (1) 

:1.J n (x) 
J n (x)=12π  π π e i(xsinθnθ) dθ 
J n (x)=1π  π 0 cos(xsinθnθ)dθ 

2.J n (x)? 
3.J v (x)(vn)? 
J v (x)= k=0  (1) k k!Γ(v+k+1) (x2 ) 2k+v (4) 

15.2.2 

⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ddx [x v J v (x)]=x v J v1 (x)(2)ddx [x v J v (x)]=x v J v+1 (x)(3)  
:(1) 
xJ  v (x)+vJ v (x)=xJ v1 (x)(4) 
xJ  v (x)vJ v (x)=xJ v+1 (x)(5) 
2J  v (x)=J v1 (x)J v+1 (x)(6) 
2vx J v (x)=J v1 (x)+J v+1 (x)(7) 

(2)J 0 (x)J 1 (x),J v (x) 
:(3)J v (x) 
1: a 0 x 3 J 0 (x)dx=a 3 J 1 (a)2a 2 J 2 (a) 
2:J 1 (x)dx=?  J 0 (x)+CJ 1 (x)=J  0 (x) 
3:J 3 (x)dx=J 0 (x)2J 2 (x)+c 

15.2.3 

 a 0 ρJ n (k n m ρ)J n (k n l ρ)dρ=a 2 2 J 2 n+1 (k n l a)δ ml (8) 
:ρ 2 R  (ρ)+ρR  (ρ)+(k 2 ρ 2 n 2 )R(ρ)=0 
ddρ (ρdRdρ )+(k 2 ρn 2 ρ )R=0 
ddρ [ρdJ n (k n m ρ)dρ ]+[(k n m ) 2 ρn 2 ρ ]J n (k n m ρ)=0(9) 
ddρ [ρdJ n (k n l ρ)dρ ]+[(k n l ) 2 ρn 2 ρ ]J n (k n l ρ)=0(10) 
J n (k n m a)=0,m=1,2,,l, 
 a 0 [(9)J n (k n l ρ)(10)J n (k n m ρ)]dρ: 
[(k n m ) 2 (k n l ) 2 ] a 0 ρJ n (k n m ρ)J n (k n l ρ)dρ 
= a 0 J n (k n m ρ)ddρ [ρdJ n (k n l ρ)dρ ]dρ a 0 J n (k n l ρ)ddρ [ρdJ n (k n m ρ)dρ ]dρ 
=ρJ n (k n m ρ)dJ n (k n l ρ)dρ | a 0  a 0 ρdJ n (k n l ρ)dρ dJ n (k n m ρ)dρ dρ 
ρJ n (k n l ρ)dJ n (k n m ρ)dρ | a 0 + a 0 ρdJ n (k n m ρ)dρ dJ n (k n l ρ)dρ dρ 

[(k n m ) 2 (k n l ) 2 ] a 0 ρJ n (k n m ρ)J n (k n l ρ)dρ 
=ρ[J n (k n m ρ)dJ n (k n l ρ)dρ J n (k n l ρ)dJ n (k n m ρ)dρ ]| 1 0  
=0(J n (k n m a)=0,m=1,2,,l,) 
1.ml: a 0 ρJ n (k n m ρ)J n (k n l ρ)dρ=0 
2.m=l,ml 
 a 0 ρJ n (k n m ρ)J n (k n l ρ)dρ=lim k n m k n l  aJ n (k n m a)J  n (k n l a)k n l (k n m ) 2 (k n l ) 2   
=lim k n m k n l  a 2 k n l J  n (k n m a)J  n (k n l a)2k n m  =a 2 2 [J  n (k n l a)] 2 =a 2 2 J 2 n+1 (k n l a) 

15.2.4广 

f(ρ)[0,a],,f(ρ)| ρ=0 ,f(ρ)| ρ=a =0, 
f(ρ)= m=1  c m J n (k n m ρ) 
c m =1a 2 2 J 2 n+1 (k n m a)  a 0 ρf(ρ)J n (k n m ρ)dρ 

4:a,h,,u 0 ,. 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Δu=0,0ρa(1)u(a,z)=0(2)u(ρ,0)=0(3)u(ρ,h)=u 0 (4)  
:1.u(ρ,z)=R(ρ)Z(z) 
(1){Z  +μZ=0(5)ρ 2 R  +ρR  +(k 2 ρ 2 0)R=0(6)  
(2)R(a)=0(7);(3)Z(0)=0(8) 

2.(6)(7) 
k 2 =μ=(x 0 m a ) 2 ,R m (ρ)=J 0 (k 0 m ρ),m=1,2, 
3.(5): 
{Z  +μZ=0(5)Z m (z)=c m sinh(k 0 m z)Z(0)=0(8)  
4.,: 
u(ρ,z)= m=1  c m sinh(k 0 m z)J 0 (k 0 m ρ) 
 m=1  c m sinh(k 0 m h)J 0 (k 0 m ρ)=u 0  
c m =1a 2 2 J 2 1 (k 0 m a)sinh(k 0 m h)  a 0 u 0 ρJ 0 (k 0 m ρ)dρ 
x=k 0 m ρ 
 a 0 ρJ 0 (k 0 m ρ)dρ=1(k 0 m ) 2   (k 0 m a) 0 xJ 0 (x)dx=ak 0 m  J 1 (k 0 m a) 
:J 1 (k 0 m a)=0? 
c m =1a 2 2 J 2 1 (k 0 m a)sinh(k 0 m h)  a 0 u 0 ρJ 0 (k 0 m ρ)dρ 
=2u 0 (k 0 m a)sinh(k 0 m h)J 1 (k 0 m a)  
u= m=1  2u 0 x 0 m  sinh(k 0 m z)sinh(k 0 m h) J 0 (k 0 m ρ)J 1 (k 0 m a)  

15.2.5 

(1) 
e x2 (t1t ) = n=  J n (x)t n (1) 
(2): 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ddx [x v J v (x)]=x v J v1 (x)(2)ddx [x v J v (x)]=x v J v+1 (x)(3)  
(3) 
 a 0 ρJ n (k n m ρ)J n (k n l ρ)dρ=a 2 2 J 2 n+1 (k n l a)δ ml (8) 
(4)广 
f(ρ)= m=1  c m J n (k n m ρ) 
c m =1a 2 2 J 2 n+1 (k n m a)  a 0 ρf(ρ)J n (k n m ρ)dρ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值