泛函分析 01.02 距离空间-基本概念

KaTeX parse error: Undefined control sequence: \S at position 14: \color{blue}{\̲S̲ ̲1.1 距离空间的基本概念}

1.1.1 距 离 空 间 的 定 义 \color{blue}{1.1.1 距离空间的定义} 1.1.1

在高等数学中引进的最重要的概念就是极限.
定义在R上的函数的许多重要性质是由极限来刻画的.
连续、微分、积分、无穷级数都是由极限定义的.
极限是研究函数的重要工具.
把极限这一概念“类比”地推广到更一般的空间.
所谓空间–是指集合加上一定的“结构”.
$一维空间:数列的极限, x_n \to x(n \to \infty), 如果对于 \forall \varepsilon > 0, \\
\exists 正整数 N, 当n \geq N时, 有 |x_n - x| < \varepsilon, \\
则称数列 x_n \to x (n \to \infty).在这里|x_n - x| 是x_n 和 x 之间的距离 d(x_n, x).\\
即:当n充分大时, x_n 和 x之间的距离 d(x_n, x)可以任意小, 则称数列 x_n \to x(n \to \infty). $

二 维 情 况 : 我 们 可 以 类 似 地 定 义 点 列 的 极 限 . 二维情况:我们可以类似地定义点列的极限. :.
所 不 同 的 是 x n 和 x 之 间 的 距 离 是 平 面 上 两 点 之 间 的 距 离 . 所不同的是x_n和x之间的距离是平面上两点之间的距离. xnx.
点 列 x n = ( ξ n , η n ) → x = ( ξ , η ) ( n → ∞ ) 的 定 义 : 点列x_n = (\xi_n, \eta_n) \to x = (\xi, \eta)(n \to \infty)的定义: xn=(ξn,ηn)x=(ξ,η)(n):
如 果 对 于 ∀ ε > 0 , ∃ 正 整 数 N , 当 n ≥ N 时 , 有 如果对于\forall \varepsilon > 0, \exists 正整数N, 当n \geq N时, 有 ε>0,N,nN,
$d(x_n, x) = \sqrt{(\xi_n - \xi)^2 + (\eta_n - \eta)^2 } < \varepsilon, $
则 称 点 列 x n = ( ξ n , η n ) → x = ( ξ , η ) ( n → ∞ ) . 则称点列 x_n = (\xi_n, \eta_n) \to x = (\xi, \eta)(n \to \infty). xn=(ξn,ηn)x=(ξ,η)(n).
所 不 同 的 只 是 距 离 d ( x n , x ) 的 具 体 表 示 形 式 . 所不同的只是距离d(x_n, x)的具体表示形式. d(xn,x).
在 泛 函 分 析 中 , 我 们 将 研 究 更 一 般 的 “ 空 间 ” 以 及 在 这 些 “ 空 间 ” 上 定 义 的 “ 函 数 ” 、 “ 映 射 ” , 进 一 步 讨 论 与 它 们 相 关 的 极 限 和 运 算 . 在泛函分析中,我们将研究更一般的“空间”以及在这些“空间”上定义的\\\\ “函数”、“映射”, 进一步讨论与它们相关的极限和运算. ,.
要 在 一 般 的 “ 空 间 ” 中 建 立 极 限 的 概 念 , 我 们 需 要 再 引 入 “ 距 离 ” 的 概 念 . 要在一般的“空间”中建立极限的概念,我们需要再引入“距离”的概念. .
即 在 一 个 集 合 上 定 义 两 点 之 间 的 “ 距 离 ” , 使 之 成 为 我 们 下 面 所 说 的 “ 距 离 空 间 ” . 即在一个集合上定义两点之间的“距离”,使之成为我们下面所说的“距离空间”. 使.
有 了 距 离 , 我 们 就 可 以 定 义 相 应 的 极 限 . 引 入 极 限 这 一 概 念 ( 运 算 ) , 进 而 可 以 研 究 一 般 “ 空 间 ” 中 的 元 素 ( 函 数 、 算 子 ) 的 性 质 . 有了距离,我们就可以定义相应的极限.引入极限这一概念(运算),\\\\ 进而可以研究一般“空间”中的元素(函数、算子)的性质. .(),().

本 节 的 内 容 : 本节的内容:
( 1 ) 距 离 空 间 的 定 义 ; (1) 距离空间的定义; (1);
( 2 ) 距 离 空 间 的 例 子 ; (2)距离空间的例子; (2);
( 3 ) 距 离 空 间 中 的 收 敛 性 . (3)距离空间中的收敛性. (3).
如 何 定 义 距 离 ? 即 如 何 抽 象 出 极 限 的 本 质 特 征 ? 如何定义距离?即如何抽象出极限的本质特征? ?
设 x , y 是 平 面 上 两 点 : x = ( x 1 , x 2 ) , y = ( y 1 , y 2 ) . 设x, y是平面上两点:x = (x_1, x_2), y = (y_1, y_2). x,y:x=(x1,x2),y=(y1,y2).
两 点 间 的 距 离 为 : d ( x , y ) = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 . 两点间的距离为: d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}. :d(x,y)=(x1y1)2+(x2y2)2 .
它 满 足 : 它满足: :
1. 距 离 是 非 负 的 : d ( x , y ) ≥ 0 ; 2. 距 离 是 严 格 正 的 : d ( x , y ) = 0 , 当 且 仅 当 x = y ; 3. 距 离 是 对 称 的 : d ( y , x ) = d ( x , y ) ; 4. 距 离 满 足 三 角 不 等 式 ( 两 边 之 和 大 于 第 三 边 ) : d ( x , y ) ≤ d ( x , z ) + d ( z , y ) . 我 们 把 具 有 这 些 性 质 的 从 平 面 上 的 点 到 实 数 的 二 元 映 射 ( X × X → R ) 定 义 为 距 离 . \color{blue}{1.距离是非负的:d(x, y) \geq 0; \\\\ 2.距离是严格正的:d(x, y) = 0,当且仅当 x = y; \\\\ 3.距离是对称的:d(y, x) = d(x, y); \\\\ 4.距离满足三角不等式(两边之和大于第三边):d(x, y) \leq d(x, z) + d(z, y). \\\\ 我们把具有这些性质的从平面上的点到实数的二元映射(X \times X \to R)定义为距离.} 1.:d(x,y)0;2.:d(x,y)=0,x=y;3.:d(y,x)=d(x,y);4.():d(x,y)d(x,z)+d(z,y).(X×XR).

定 义 1.1.1 ( 距 离 空 间 定 义 ) 设 X 是 任 意 非 空 集 合 , 对 于 X 中 的 任 何 点 x , y , 均 有 一 个 实 数 d ( x , y ) 与 它 对 应 , 且 满 足 : 定义1.1.1(距离空间定义)设X是任意非空集合,对于X中的任何点x,y,\\\\ 均有一个实数d(x, y)与它对应,且满足: 1.1.1()X,Xx,y,d(x,y),:
( 1 ) d ( x , y ) ≥ 0 ( 非 负 性 ) ; (1) d(x, y) \geq 0 (非负性); (1)d(x,y)0();
( 2 ) d ( x , y ) = 0 , 当 且 仅 当 x = y ( 严 格 正 ) ; (2) d(x, y) = 0, 当且仅当 x = y (严格正); (2)d(x,y)=0,x=y();
( 3 ) d ( y , x ) = d ( x , y ) ( 对 称 性 ) ; (3) d(y, x) = d(x, y) (对称性); (3)d(y,x)=d(x,y)();
( 4 ) d ( x , y ) ≤ d ( x , z ) + d ( z , y ) ( 三 角 不 等 式 ) . (4) d(x, y) \leq d(x, z) + d(z, y) (三角不等式). (4)d(x,y)d(x,z)+d(z,y)().
则 称 d ( x , y ) 为 X 中 的 一 个 距 离 . 则称 d(x, y)为X中的一个距离. d(x,y)X.
定 义 了 距 离 d 的 集 合 称 为 一 个 距 离 空 间 , 记 为 ( X , d ) , 简 记 为 X . 定义了距离d的集合称为一个距离空间,记为(X, d),简记为X. d,(X,d),X.
注 1 : 在 距 离 的 定 义 中 , 保 留 了 实 数 空 间 ( 或 者 说 平 面 和 n 维 空 间 ) 中 距 离 的 最 基 本 性 质 . 注1:在距离的定义中,保留了实数空间(或者说平面和n维空间)中距离的最基本性质. 1:,(n).
从 一 些 具 体 实 例 中 抽 象 出 问 题 的 本 质 特 征 , 加 以 概 括 , 给 出 在 一 般 意 义 下 的 定 义 , 使 之 能 够 运 用 于 更 加 广 阔 的 范 围 , 是 数 学 研 究 中 的 重 要 方 法 . 从一些具体实例中抽象出问题的本质特征,加以概括,给出在一般意义下的定义,\\\\ 使之能够运用于更加广阔的范围,是数学研究中的重要方法. ,,,使广,.
注 2 : 性 质 ( 1 ) − ( 4 ) 称 为 是 距 离 公 理 , 其 中 性 质 ( 4 ) 来 源 于 三 角 形 中 的 两 边 之 和 大 于 第 三 边 . 见 图 1.1.1 注2:性质(1)-(4)称为是距离公理,其中性质(4)来源于三角形中的两边之和大于第三边.\\\\ 见图1.1.1 2:(1)(4),(4).1.1.1
图1.1.1 平面三角不等式
注 3 : 运 用 数 学 归 纳 法 , 可 把 三 角 不 等 式 推 广 为 : 注3:运用数学归纳法,可把三角不等式推广为: 3广:
d ( x 1 , x n ) ≤ d ( x 1 , x 2 ) + d ( x 2 , x 3 ) + ⋯ + d ( x n − 1 , x n ) . d(x_1, x_n) \leq d(x_1, x_2) + d(x_2, x_3) + \cdots + d(x_{n-1}, x_n). d(x1,xn)d(x1,x2)+d(x2,x3)++d(xn1,xn).
注 4 : 设 ( X , d ) 是 一 个 距 离 空 间 , 由 三 角 不 等 式 可 证 , 对 于 任 意 x , y , z ∈ X , 有 注4:设(X, d)是一个距离空间,由三角不等式可证,对于任意x, y, z \in X, 有 4(X,d),x,y,zX,
∣ d ( x , y ) − d ( y , z ) ∣ ≤ d ( x , z ) |d(x, y) - d(y, z)| \leq d(x, z) d(x,y)d(y,z)d(x,z)
即:两边之差小于第三边.

d ( x , z ) + d ( y , z ) ≥ d ( x , y ) ⇒ d ( x , y ) − d ( y , z ) ≤ d ( x , z ) ; d(x, z) + d(y, z) \geq d(x, y) \Rightarrow d(x, y) - d(y, z) \leq d(x, z); d(x,z)+d(y,z)d(x,y)d(x,y)d(y,z)d(x,z);
d ( x , z ) + d ( x , y ) ≥ d ( y , z ) ⇒ d ( y , z ) − d ( x , y ) ≤ d ( x , z ) ; d(x, z) + d(x, y) \geq d(y, z) \Rightarrow d(y, z) - d(x, y) \leq d(x, z); d(x,z)+d(x,y)d(y,z)d(y,z)d(x,y)d(x,z);

1.1.2 距 离 空 间 的 例 \color{blue}{1.1.2 距离空间的例} 1.1.2

例 1.1.2 在 n 维 实 向 量 空 间 R n 中 , 定 义 d ( x , y ) = ( ∑ k = 1 n ( ξ k − η k ) 2 ) 1 2 , ( 1.1.1 ) 例1.1.2 在n维实向量空间R^n中,定义 d(x, y) = (\sum \limits_{k=1}^{n}(\xi_k - \eta_k)^2)^{\frac{1}{2}}, \quad (1.1.1) 1.1.2nRn,d(x,y)=(k=1n(ξkηk)2)21,(1.1.1)
其 中 x = ( ξ 1 , ⋯   , ξ n ) , y = ( η 1 , ⋯   , η n ) . 则 ( R n , d ) 是 一 个 距 离 空 间 . 其中x = (\xi_1, \cdots, \xi_n), y = (\eta_1, \cdots, \eta_n).则(R^n, d)是一个距离空间. x=(ξ1,,ξn),y=(η1,,ηn).(Rn,d).
分 析 : 要 证 明 ( R n , d ) 是 一 个 距 离 空 间 , 根 据 距 离 空 间 的 定 义 , 即 要 证 明 在 R n 中 定 义 的 距 离 ( 1.1.1 ) 式 满 足 “ 定 义 1.1.1 ” 中 的 条 件 ( 1 ) − ( 4 ) . 分析:要证明(R^n, d)是一个距离空间,根据距离空间的定义,即要证明在R^n\\\\ 中定义的距离(1.1.1)式满足“定义1.1.1”中的条件(1)-(4). (Rn,d)Rn(1.1.1)1.1.1(1)(4).
前 三 条 ( 非 负 、 正 定 、 对 称 ) 显 然 成 立 。 只 需 证 明 ( 4 ) ( 三 角 不 等 式 ) 成 立 , 证 明 主 要 利 用 C a u c h y 不 等 式 . 前三条(非负、正定、对称)显然成立。只需证明(4)(三角不等式)成立,\\\\ 证明主要利用Cauchy不等式. ()(4)(),Cauchy.
证 明 : ( 1 ) − ( 3 ) 显 然 成 立 , 下 面 验 证 ( 4 ) 成 立 . 由 C a u c h y 不 等 式 ∑ k = 1 n a k b k ≤ ( ∑ k = 1 n a k 2 ) 1 2 ( ∑ k = 1 n b k 2 ) 1 2 , 可 推 出 : ( ∑ k = 1 n ( a k + b k ) 2 ) 1 2 ≤ ( ∑ k = 1 n a k 2 ) 1 2 + ( ∑ k = 1 n b k 2 ) 1 2 ( 1.1.2 ) 证明:(1)-(3)显然成立,下面验证(4)成立.\\\\ 由Cauchy不等式 \sum \limits_{k=1}^{n} a_k b_k \leq (\sum \limits_{k=1}^{n} a_k^2)^{\frac{1}{2}} (\sum \limits_{k=1}^{n} b_k^2)^{\frac{1}{2}},\\\\ 可推出: (\sum \limits_{k=1}^{n}(a_k + b_k)^2)^{\frac{1}{2}} \leq (\sum \limits_{k=1}^{n} a_k^2)^{\frac{1}{2}} + (\sum \limits_{k=1}^{n} b_k^2)^{\frac{1}{2}} \quad (1.1.2) :(1)(3),(4).Cauchyk=1nakbk(k=1nak2)21(k=1nbk2)21,:(k=1n(ak+bk)2)21(k=1nak2)21+(k=1nbk2)21(1.1.2)
事 实 上 , 事实上,
∑ k = 1 n ( a k + b k ) 2 = ∑ k = 1 n a k 2 + 2 ∑ k = 1 n a k b k + ∑ k = 1 n b k 2 \sum \limits_{k=1}^{n}(a_k + b_k)^2 = \sum \limits_{k=1}^{n} a_k^2 + 2 \sum \limits_{k=1}^{n} a_k b_k + \sum \limits_{k=1}^{n} b_k^2 k=1n(ak+bk)2=k=1nak2+2k=1nakbk+k=1nbk2
≤ ∑ k = 1 n a k 2 + 2 [ ( ∑ k = 1 n a k 2 ) ( ∑ k = 1 n b k 2 ) ] 1 2 + ∑ k = 1 n b k 2 \leq \sum \limits_{k=1}^{n} a_k^2 + 2 [(\sum \limits_{k=1}^{n} a_k^2)(\sum \limits_{k=1}^{n} b_k^2)]^{\frac{1}{2}} + \sum \limits_{k=1}^{n} b_k^2 k=1nak2+2[(k=1nak2)(k=1nbk2)]21+k=1nbk2
= [ ( ∑ k = 1 n a k 2 ) 1 2 + ( ∑ k = 1 n b k 2 ) 1 2 ] 2 =[(\sum \limits_{k=1}^{n} a_k^2)^{\frac{1}{2}} + (\sum \limits_{k=1}^{n} b_k^2)^{\frac{1}{2}}]^2 =[(k=1nak2)21+(k=1nbk2)21]2
设 x = ( ξ 1 , ⋯   , ξ n ) , y = ( η 1 , ⋯   , η n ) , z = ( ζ 1 , ⋯   , ζ n ) 是 R n 中 的 任 意 三 点 . 设x = (\xi_1, \cdots, \xi_n), y = (\eta_1, \cdots, \eta_n), z = (\zeta_1, \cdots, \zeta_n)是R^n中的任意三点. x=(ξ1,,ξn),y=(η1,,ηn),z=(ζ1,,ζn)Rn.
在 不 等 式 ( 1.1.2 ) ( ∑ k = 1 n ( a k + b k ) 2 ) 1 2 ≤ ( ∑ k = 1 n a k 2 ) 1 2 + ( ∑ k = 1 n b k 2 ) 1 2 中 , 在不等式(1.1.2) (\sum \limits_{k=1}^{n}(a_k + b_k)^2)^{\frac{1}{2}} \leq (\sum \limits_{k=1}^{n} a_k^2)^{\frac{1}{2}} + (\sum \limits_{k=1}^{n} b_k^2)^{\frac{1}{2}}中, (1.1.2)(k=1n(ak+bk)2)21(k=1nak2)21+(k=1nbk2)21,
令 a k = ( ξ k − ζ k ) , b k = ( ζ k − η k ) , 则 令a_k = (\xi_k - \zeta_k), b_k = (\zeta_k - \eta_k), 则 ak=(ξkζk),bk=(ζkηk),
[ ∑ k = 1 n ( ξ k − η k ) 2 ] 1 2 ≤ [ ∑ k = 1 n ( ξ k − ζ k ) 2 ] 1 2 + [ ∑ k = 1 n ( ζ k − η k ) 2 ] 1 2 [\sum \limits_{k=1}^{n}(\xi_k - \eta_k)^2]^{\frac{1}{2}} \leq [\sum \limits_{k=1}^{n}(\xi_k - \zeta_k)^2]^{\frac{1}{2}} + [\sum \limits_{k=1}^{n}(\zeta_k - \eta_k)^2]^{\frac{1}{2}} [k=1n(ξkηk)2]21[k=1n(ξkζk)2]21+[k=1n(ζkηk)2]21
即 d ( x , y ) ≤ d ( x , z ) + d ( z , y ) 即 d(x, y) \leq d(x, z) + d(z, y) d(x,y)d(x,z)+d(z,y)
所 以 ( R n , d ) 是 一 个 距 离 空 间 , 简 记 为 R n . 所以(R^n, d)是一个距离空间,简记为R^n. (Rn,d),Rn.
注 1 : 在 n 维 复 向 量 空 间 C n 中 , 可 类 似 地 定 义 距 离 注1:在n维复向量空间 C^n 中,可类似地定义距离 1nCn,
d ( x , y ) = ( ∑ k = 1 n ∣ ξ k − η k ∣ 2 ) 1 2 \qquad d(x, y) = (\sum \limits_{k=1}^{n} |\xi_k - \eta_k|^2)^{\frac{1}{2}} d(x,y)=(k=1nξkηk2)21
注 2 : 在 一 个 集 合 上 可 以 定 义 不 同 的 距 离 , 从 而 得 到 不 同 的 距 离 空 间 . 注2:在一个集合上可以定义不同的距离,从而得到不同的距离空间. 2.

例 1.1.3 在 R n 中 , 可 分 别 定 义 例1.1.3 在R^n中,可分别定义 1.1.3Rn,
d 1 ( x , y ) = ∑ k = 1 n ∣ ξ k − η k ∣ , ( 1.1.3 ) \qquad d_1(x, y) = \sum \limits_{k=1}^{n} | \xi_k - \eta_k |, \quad (1.1.3) d1(x,y)=k=1nξkηk,(1.1.3)
d ∞ ( x , y ) = max ⁡ { ∣ ξ 1 − η 1 ∣ , ⋯   , ∣ ξ n − η n ∣ } , ( 1.1.4 ) \qquad d_{\infty}(x, y) = \max \lbrace |\xi_1 - \eta_1 |, \cdots, |\xi_n - \eta_n| \rbrace, \quad (1.1.4) d(x,y)=max{ξ1η1,,ξnηn},(1.1.4)
由 实 数 的 三 角 不 等 式 , 容 易 验 证 ( R n , d 1 ) , ( R n , d ∞ ) 都 是 距 离 空 间 . 由实数的三角不等式,容易验证(R^n, d_1), (R^n, d_{\infty})都是距离空间. (Rn,d1),(Rn,d).

例 1.1.4 序 列 空 间 l ∞ . 例1.1.4 序列空间l^{\infty}. 1.1.4l.
令 l ∞ = { x = ( ξ j ) ∣ ∣ ξ j ∣ ≤ c x } , 令 l^{\infty} = \lbrace x = (\xi_j) | |\xi_j| \leq c_x \rbrace, l={x=(ξj)ξjcx},
其 中 c x 与 j 无 关 , 即 l ∞ 是 全 体 有 界 的 数 列 . 在 l ∞ 中 定 义 其中c_x与j无关,即l^{\infty}是全体有界的数列.在l^{\infty}中定义 cxjl.l
d ( x , y ) = sup ⁡ j ∈ N { ∣ ξ j − η j ∣ } , ( 1.1.5 ) \qquad d(x, y) = \sup \limits_{j \in N} \lbrace |\xi_j - \eta_j | \rbrace, \quad (1.1.5) d(x,y)=jNsup{ξjηj},(1.1.5)
$其中,x = (\xi_j), y = (\eta_j) \in l^{\infty}并且 N = \lbrace 1, 2, \cdots \rbrace, $
验 证 l ∞ 是 一 个 距 离 空 间 验证 l^{\infty}是一个距离空间 l
注 意 : 由 于 数 列 是 有 界 的 , ( 1.1.5 ) 式 中 的 上 确 界 存 在 . 注意:由于数列是有界的,(1.1.5)式中的上确界存在. :(1.1.5).
注 : l ∞ 可 看 作 是 C n 由 ( 1.1.4 ) 式 定 义 的 距 离 d ∞ ( x , y ) 产 生 的 注:l^{\infty}可看作是C^n由(1.1.4)式定义的距离d_{\infty}(x, y)产生的 :lCn(1.1.4)d(x,y)
距 离 空 间 ( C n , d ∞ ) 的 推 广 , 由 于 是 无 穷 序 列 , max ⁡ 被 sup ⁡ 所 代 替 . 距离空间(C^n, d_{\infty})的推广,由于是无穷序列, \max 被 \sup 所代替. (Cn,d)广,,maxsup.

例 1.1.5 连 续 函 数 空 间 C [ a , b ] . 例1.1.5 连续函数空间C[a, b]. 1.1.5C[a,b].
考 虑 闭 区 间 [ a , b ] 上 全 体 连 续 函 数 , 定 义 考虑闭区间[a, b]上全体连续函数,定义 [a,b]
d ( x , y ) = max ⁡ a ≤ t ≤ b ∣ x ( t ) − y ( t ) ∣ , ( 1.1.6 ) \qquad d(x, y) = \max \limits_{a \leq t \leq b} | x(t) - y(t) |, \quad (1.1.6) d(x,y)=atbmaxx(t)y(t),(1.1.6)
其 中 x ( t ) , y ( t ) 是 [ a , b ] 上 的 任 意 两 个 连 续 函 数 , 则 C [ a , b ] 是 一 个 距 离 空 间 . 其中x(t), y(t)是[a, b]上的任意两个连续函数,则C[a, b]是一个距离空间. x(t),y(t)[a,b],C[a,b].
分 析 : 要 证 明 在 由 闭 区 间 [ a , b ] 上 全 体 连 续 函 数 组 成 的 集 合 上 定 义 的 距 离 ( 1.1.6 ) 式 满 足 定 义 1.1.1 的 ( 1 ) − ( 4 ) . 分析:要证明在由闭区间[a, b]上全体连续函数组成的集合上定义的\\\\ 距离(1.1.6)式满足定义1.1.1的(1)-(4). :[a,b](1.1.6)1.1.1(1)(4).
证 明 距 离 定 义 中 的 ( 1 ) − ( 3 ) ( 非 负 、 正 定 、 对 称 ) 显 然 成 立 . 下 面 证 明 ( 4 ) 成 立 . 证明距离定义中的(1)-(3)(非负、正定、对称)显然成立.下面证明(4)成立. (1)(3)().(4).
设 x ( t ) , y ( t ) , z ( t ) 是 [ a , b ] 上 任 意 三 个 连 续 函 数 , 设x(t), y(t),z(t)是[a, b]上任意三个连续函数, x(t),y(t),z(t)[a,b],
要 证 d ( x , y ) ≤ d ( x , z ) + d ( z , y ) , 即 要 证 : 要证 d(x, y) \leq d(x, z) + d(z, y),即要证: d(x,y)d(x,z)+d(z,y),:
$\max \limits_{a \leq t \leq b} | x(t) - y(t) | \leq \max \limits_{a \leq t \leq b} | x(t) - z(t) | + \max \limits_{a \leq t \leq b} | z(t) - y(t) | $
由 绝 对 值 三 角 不 等 式 , 对 ∀ t ∈ [ a , b ] , 由绝对值三角不等式,对 \forall t \in [a, b], t[a,b],
∣ x ( t ) − y ( t ) ∣ ≤ ∣ x ( t ) − z ( t ) ∣ + ∣ z ( t ) − y ( t ) ∣ |x(t) - y(t)| \leq |x(t) - z(t)| + |z(t) - y(t)| x(t)y(t)x(t)z(t)+z(t)y(t)
≤ max ⁡ a ≤ t ≤ b ∣ x ( t ) − z ( t ) ∣ + max ⁡ a ≤ t ≤ b ∣ z ( t ) − y ( t ) ∣ \leq \max \limits_{a \leq t \leq b} |x(t) - z(t)| + \max \limits_{a \leq t \leq b} |z(t) - y(t)| atbmaxx(t)z(t)+atbmaxz(t)y(t)
= d ( x , z ) + d ( z , y ) = d(x, z) + d(z, y) =d(x,z)+d(z,y)
所 以 d ( x , y ) = max ⁡ a ≤ t ≤ b ∣ x ( t ) − y ( t ) ∣ ≤ d ( x , z ) + d ( z , y ) 所以 d(x, y) = \max \limits_{a \leq t \leq b}|x(t) - y(t)| \leq d(x, z) + d(z, y) d(x,y)=atbmaxx(t)y(t)d(x,z)+d(z,y)
于 是 [ a , b ] 上 的 全 体 连 续 函 数 赋 以 上 述 距 离 称 为 一 个 距 离 空 间 , 记 为 C [ a , b ] . 于是[a, b]上的全体连续函数赋以上述距离称为一个距离空间,记为C[a, b]. [a,b]C[a,b].

例 1.1.6 在 由 闭 区 间 [ a , b ] 上 定 义 的 全 体 连 续 函 数 组 成 的 集 合 上 , 还 可 以 定 义 例1.1.6 在由闭区间[a, b] 上定义的全体连续函数组成的集合上,还可以定义 1.1.6[a,b],
d ( x , y ) = ∫ a b ∣ x ( t ) − y ( t ) ∣ d t ( 1.1.7 ) \qquad d(x, y) = \int_a^b |x(t) - y(t)| dt \quad (1.1.7) d(x,y)=abx(t)y(t)dt(1.1.7)
形 成 一 个 新 的 距 离 空 间 . 形成一个新的距离空间. .
它 与 C [ a , b ] 空 间 有 很 大 不 同 . 它与C[a, b]空间有很大不同. C[a,b].

例 1.1.7 在 由 [ a , b ] 区 间 上 全 体 连 续 函 数 组 成 的 集 合 上 , 我 们 还 可 以 定 义 例1.1.7 在由[a, b]区间上全体连续函数组成的集合上,我们还可以定义 1.1.7[a,b],
d ( x , y ) = { ∫ a b ∣ x ( t ) − y ( t ) ∣ 2 d t } 1 2 ( 1.1.8 ) \qquad d(x, y) = \lbrace \int_a^b |x(t) - y(t) |^2 dt \rbrace ^{\frac{1}{2}} \quad (1.1.8) d(x,y)={abx(t)y(t)2dt}21(1.1.8)
可 以 证 明 它 也 是 一 个 距 离 空 间 ( 证 明 见 第 二 章 2.2.3 节 ) 可以证明它也是一个距离空间(证明见第二章 2.2.3 节) (2.2.3)
在 第 三 章 可 以 看 到 , 它 是 由 内 积 产 生 的 距 离 , 是 一 个 十 分 重 要 的 距 离 . 在第三章可以看到,它是由内积产生的距离,是一个十分重要的距离. .
注 : 在 一 个 集 合 上 , 可 以 引 进 多 种 距 离 。 要 根 据 研 究 问 题 的 不 同 , 定 义 不 同 的 距 离 . 注:在一个集合上,可以引进多种距离。要根据研究问题的不同,定义不同的距离. .
以 后 我 们 可 以 看 到 , 有 的 距 离 下 空 间 完 备 ; 有 的 距 离 下 空 间 不 完 备 . 以后我们可以看到,有的距离下空间完备;有的距离下空间不完备. .
空 间 的 完 备 性 是 很 重 要 的 , 有 了 完 备 性 , 极 限 运 算 ( 微 分 和 积 分 ) 才 能 很 好 的 进 行 . 空间的完备性是很重要的,有了完备性,极限运算(微分和积分)才能很好的进行. ().
不 同 的 距 离 导 出 的 收 敛 性 不 同 . 不同的距离导出的收敛性不同. .
距 离 空 间 中 距 离 的 选 择 是 十 分 重 要 的 . 距离空间中距离的选择是十分重要的. .
具 体 定 义 什 么 样 的 距 离 , 要 根 据 不 同 的 问 题 , 设 定 不 同 的 目 标 , 引 进 不 同 的 距 离 . 具体定义什么样的距离,要根据不同的问题,设定不同的目标,引进不同的距离. .

例 1.1.8 设 B 为 全 体 由 整 数 组 成 的 元 素 序 列 , 例1.1.8 设B为全体由整数组成的元素序列, 1.1.8B,
即 B = { n = ( n 1 , n 2 , ⋯   ) ∣ n i ∈ N } , 定 义 即 B = \lbrace n = (n_1, n_2, \cdots) | n_i \in N \rbrace, 定义 B={n=(n1,n2,)niN},
d ( n , m ) = { 0 , 如 果 n i = m i , i = 1 , 2 , ⋯   , 1 k , k 是 n i ≠ m i 头 一 个 指 标 , \qquad d(n, m) = \left \lbrace \begin{array}{l} 0, 如果n_i = m_i, i = 1, 2, \cdots, \\ \dfrac{1}{k}, k 是n_i \neq m_i头一个指标, \end{array} \right. d(n,m)={0,ni=mi,i=1,2,,k1,kni=mi,
其 中 m = ( m 1 , m 2 , ⋯   ) . 可 以 验 证 ( B , d ) 是 一 个 距 离 空 间 , 其中m = (m_1, m_2, \cdots).可以验证(B, d)是一个距离空间, m=(m1,m2,).(B,d),
且 这 个 距 离 满 足 “ 更 强 ” 的 三 角 不 等 式 , 即 对 于 ∀ n , m , h ∈ B , 有 且这个距离满足“更强”的三角不等式,即对于 \forall n, m, h \in B, 有 ,n,m,hB,
d ( n , m ) ≤ max ⁡ { d ( n , h ) , d ( h , m ) } ( 1.1.9 ) \qquad d(n, m) \leq \max \lbrace d(n,h), d(h, m) \rbrace \quad (1.1.9) d(n,m)max{d(n,h),d(h,m)}(1.1.9)
事 实 上 , 只 要 注 意 到 n , h 和 h , m 头 一 个 不 相 等 项 的 指 标 一 定 小 于 或 者 等 于 n , m 头 一 个 不 相 等 项 的 指 标 , 则 有 ( 1.1.9 ) 式 成 立 . 事实上,只要注意到n, h 和 h, m 头一个不相等项的指标一定小于或者\\\\ 等于n, m 头一个不相等项的指标,则有(1.1.9)式成立. n,hh,mn,m(1.1.9).
这 一 距 离 , 是 从 下 述 数 学 模 型 中 抽 象 出 来 的 . 这一距离,是从下述数学模型中抽象出来的. .
假 设 s ( t ) 是 一 个 通 过 某 一 通 讯 系 统 送 出 的 信 号 , 且 s ( t ) : 假设s(t)是一个通过某一通讯系统送出的信号,且s(t): s(t)s(t):
① 每 秒 取 样 一 次 , ② 在 单 位 时 间 看 作 常 量 , ③ 信 号 码 都 编 译 成 整 数 . ①每秒取样一次,②在单位时间看作常量,③信号码都编译成整数. ,,.
如 图 1.1.2 所 示 : 如图1.1.2所示: 1.1.2:
图1.1.2 通讯信号
在 图 1.1.2 中 表 示 整 数 的 信 号 是 n s = { 0 , 1 , 3 , 5 , 6 , 7 , 7 , 8 , 8 , 7 , ⋯   } . 在图1.1.2中表示整数的信号是 n_s = \lbrace 0, 1, 3, 5, 6, 7, 7, 8, 8, 7, \cdots \rbrace. 1.1.2ns={0,1,3,5,6,7,7,8,8,7,}.
由 于 系 统 和 环 境 的 扰 动 , 收 到 的 信 号 可 能 会 发 生 误 差 . 假 设 收 到 的 信 号 是 由于系统和环境的扰动,收到的信号可能会发生误差.假设收到的信号是 .
$\qquad n_r = \lbrace n_{r_1}, n_{r_2}, \cdots \rbrace, $
则 我 们 可 以 通 过 送 出 和 收 到 的 信 号 的 距 离 d ( n s , n r ) 来 刻 画 多 长 时 间 某 一 个 误 差 发 生 , 则我们可以通过送出和收到的信号的距离 d(n_s, n_r) 来刻画多长时间某一个误差发生, d(ns,nr),
即 d ( n s , n r ) 越 小 , 则 通 信 系 统 不 发 生 误 差 运 行 的 时 间 越 长 . 即d(n_s, n_r)越小,则通信系统不发生误差运行的时间越长. d(ns,nr),.

例 1.1.9 X 是 一 个 非 空 集 合 , x , y ∈ X , 定 义 例1.1.9 X是一个非空集合, x, y \in X, 定义 1.1.9X,x,yX,
d ( x , y ) = { 1 , x ≠ y , 0 , x = y ( 1.1.10 ) \qquad d(x, y) = \left \lbrace \begin{array}{l}1, x \neq y, \\ 0, x = y \end{array} \right. \quad (1.1.10) d(x,y)={1,x=y,0,x=y(1.1.10)
容 易 验 证 d 是 一 个 距 离 , ( X , d ) 是 一 个 距 离 空 间 , 称 为 离 散 的 距 离 空 间 , 记 为 D . 容易验证d是一个距离, (X, d)是一个距离空间,称为离散的距离空间,记为D. d,(X,d),,D.
注 : 许 多 距 离 空 间 是 在 线 性 空 间 上 定 义 的 . 注:许多距离空间是在线性空间上定义的. :线.
在 线 性 空 间 X 中 , 加 法 , 数 乘 运 算 是 封 闭 的 . 在线性空间X中,加法,数乘运算是封闭的. 线X,.
例 如 R n , C [ a , b ] , s 都 是 线 性 空 间 . 例如R^n, C[a, b], s 都是线性空间. Rn,C[a,b],s线.
但 例 1.1.9 中 定 义 的 离 散 距 离 D 不 一 定 是 线 性 空 间 . 但例1.1.9中定义的离散距离D不一定是线性空间. 1.1.9D线.

1.1.3 距 离 空 间 中 的 收 敛 \color{blue}{1.1.3 距离空间中的收敛} 1.1.3

在 空 间 中 定 义 了 距 离 后 , 我 们 就 可 以 在 距 离 空 间 中 引 入 极 限 的 概 念 . 在空间中定义了距离后,我们就可以在距离空间中引入极限的概念. ,.
这 是 我 们 的 重 要 目 的 之 一 . 这是我们的重要目的之一. .

$定义1.1.10 设(X, d)是一个距离空间, \lbrace x_n \rbrace \subset X, x_0 \in X, $
如 果 当 n → ∞ 时 , d ( x n , x 0 ) → 0 , 则 称 { x n } 以 x 0 为 极 限 , 如果当 n \to \infty 时, d(x_n, x_0) \to 0, 则称 \lbrace x_n \rbrace 以 x_0 为极限, n,d(xn,x0)0,{xn}x0,
或 说 { x n } 收 敛 到 x 0 , 记 为 或说 \lbrace x_n \rbrace 收敛到x_0, 记为 {xn}x0,
x n → x 0 ( n → ∞ ) , 或 者 lim ⁡ n → ∞ x n = x 0 \qquad x_n \to x_0 (n \to \infty), 或者 \lim \limits_{n \to \infty} x_n = x_0 xnx0(n),nlimxn=x0
注 1 : x 0 必 须 属 于 ( X , d ) . 注1: x_0 必须属于 (X, d). 1:x0(X,d).
注 2 : X 是 距 离 空 间 , 其 中 d ( x n , x 0 ) → 0 ( n → ∞ ) 是 数 列 趋 近 于 零 . 注2: X是距离空间,其中d(x_n, x_0) \to 0 (n \to \infty) 是数列趋近于零. 2:X,d(xn,x0)0(n).
注 3 : 对 于 lim ⁡ n → ∞ x n = x 0 , 用 ε − N 语 言 表 述 为 : 注3: 对于\lim \limits_{n \to \infty} x_n = x_0, 用 \varepsilon - N 语言表述为: 3:nlimxn=x0,εN:
∀ ε > 0 , ∃ N , 当 n ≥ N 时 , 有 d ( x n , x 0 ) < ε \qquad \forall \varepsilon > 0, \exists N, 当 n \geq N时, 有 d(x_n, x_0) < \varepsilon ε>0,N,nN,d(xn,x0)<ε

距离空间中收敛点列的性质:
定 理 1.1.11 { x n } 在 X 中 收 敛 , 则 定理1.1.11 \lbrace x_n \rbrace 在X中收敛,则 1.1.11{xn}X
( i ) { x n } 的 极 限 是 唯 一 的 . (i) \lbrace x_n \rbrace 的极限是唯一的. (i){xn}.
( i i ) 若 x 0 是 { x n } 的 极 限 , 则 它 的 任 何 子 列 也 收 敛 到 x 0 . (ii) 若x_0是\lbrace x_n \rbrace 的极限, 则它的任何子列也收敛到x_0. (ii)x0{xn},x0.

分 析 : 利 用 距 离 空 间 中 数 列 极 限 的 定 义 来 证 明 . 分析:利用距离空间中数列极限的定义来证明. :.
证 明 ( i ) 反 之 法 . 假 设 同 时 有 x 0 , y 0 ∈ X , x 0 ≠ y 0 , 且 证明(i) 反之法.假设同时有 x_0, y_0 \in X, x_0 \neq y_0, 且 (i).x0,y0X,x0=y0,
x n → x 0 , x n → y 0 ( n → ∞ ) . x_n \to x_0, x_n \to y_0 (n \to \infty). xnx0,xny0(n).
根 据 收 敛 数 列 的 ε − N 语 言 , 我 们 有 : 根据收敛数列的\varepsilon - N 语言,我们有: εN,:
对 于 ε 0 = 1 2 d ( x 0 , y 0 ) > 0 , 存 在 N 1 , 当 n ≥ N 1 时 , d ( x 0 , x n ) < ε 0 对于\varepsilon_0 = \dfrac{1}{2} d(x_0, y_0) > 0, 存在N_1, 当 n \geq N_1时, d(x_0, x_n) < \varepsilon_0 ε0=21d(x0,y0)>0,N1,nN1,d(x0,xn)<ε0
同 时 存 在 N 2 , 当 n ≥ N 2 时 , d ( y 0 , x n ) < ε 0 同时存在N_2, 当n \geq N_2时, d(y_0, x_n) < \varepsilon_0 N2,nN2,d(y0,xn)<ε0
于 是 当 n ≥ max ⁡ { N 1 , N 2 } 时 , 于是当n \geq \max \lbrace N_1, N_2 \rbrace 时, nmax{N1,N2},
d ( x 0 , y 0 ) ≤ d ( x 0 , x n ) + d ( x n , y 0 ) < 2 ε = d ( x 0 , y 0 ) , \qquad d(x_0, y_0) \leq d(x_0, x_n) +d(x_n, y_0) < 2 \varepsilon = d(x_0, y_0), d(x0,y0)d(x0,xn)+d(xn,y0)<2ε=d(x0,y0),
这 是 不 可 能 的 , 因 此 极 限 唯 一 . 这是不可能的,因此极限唯一. .
( i i ) 与 数 学 分 析 中 ( 通 常 实 数 域 距 离 空 间 中 ) 收 敛 数 列 类 似 性 质 的 证 明 方 法 一 样 . (ii) 与数学分析中(通常实数域距离空间中)收敛数列类似性质的证明方法一样. (ii)().
$由已知 x_n \to x_0 (n \to \infty), 根据定义有: $
∀ ε > 0 , ∃ N , 当 n ≥ N 时 , d ( x n , x 0 ) < ε \forall \varepsilon > 0, \exists N, 当 n \geq N时, d(x_n, x_0) < \varepsilon ε>0,N,nN,d(xn,x0)<ε
设 { x n k } 是 { x n } 的 子 列 ( 要 证 x n k → x 0 ( k → ∞ ) ) , 设\lbrace x_{n_k} \rbrace 是 \lbrace x_n \rbrace 的子列(要证x_{n_k} \to x_0 (k \to \infty)), {xnk}{xn}(xnkx0(k)),
由 n k ≥ k , n k → ∞ , ( k → ∞ ) 由 n_k \geq k, n_k \to \infty, (k \to \infty) nkk,nk,(k)
取 K = N , 当 k > N 时 , n k ≥ k > K = N , 于 是 d ( x n k , x 0 ) < ε , 取 K = N, 当k > N时, n_k \geq k > K = N, 于是 d(x_{n_k}, x_0) < \varepsilon, K=N,k>N,nkk>K=N,d(xnk,x0)<ε,
即 lim ⁡ k → ∞ x n k = x 0 即 \lim \limits_{k \to \infty} x_{n_k} = x_0 klimxnk=x0

定 义 1.1.12 d ( x , y ) 是 关 于 x 和 y 的 二 元 连 续 函 数 . 定义1.1.12 d(x, y) 是关于x和y的二元连续函数. 1.1.12d(x,y)xy.
即 当 x n → x , y n → y ( n → ∞ ) 时 , 即当x_n \to x, y_n \to y(n \to \infty)时, xnx,yny(n),
d ( x n , y n ) → d ( x , y ) ( n → ∞ ) \qquad d(x_n, y_n) \to d(x, y)(n \to \infty) d(xn,yn)d(x,y)(n)
分 析 : 在 距 离 空 间 ( X , d ) 中 对 于 任 何 两 点 x , y 都 有 唯 一 确 定 的 实 数 d ( x , y ) 与 之 对 应 , 这 说 明 d ( x , y ) 是 一 个 二 元 实 函 数 . 分析:在距离空间(X, d) 中对于任何两点x, y 都有唯一确定的实数 d(x, y) \\\\ 与之对应, 这说明 d(x, y)是一个二元实函数. :(X,d)x,yd(x,y),d(x,y).
在 实 数 空 间 中 , 距 离 是 通 常 的 绝 对 值 距 离 , 定 理 要 证 : 在实数空间中,距离是通常的绝对值距离,定理要证: ,,:
在 条 件 x n → x , y n → y ( n → ∞ ) 下 , 有 在条件x_n \to x, y_n \to y (n \to \infty)下,有 xnx,yny(n),
∣ d ( x n , y n ) − d ( x , y ) ∣ → 0 ( n → ∞ ) \qquad |d(x_n, y_n) - d(x, y) | \to 0 (n \to \infty) d(xn,yn)d(x,y)0(n)

证 明 : 由 距 离 的 三 角 不 等 式 有 : 证明:由距离的三角不等式有: :
$d(x_n, y_n) \leq d(x_n, x) + d(x, y) + d(y, y_n), $
$即: d(x_n, y_n) - d(x, y) \leq d(x_n, x) + d(y_n, y), $
$同理有: d(x, y) - d(x_n, y_n) \leq d(x_n, x) + d(y_n, y), $
于 是 有 : 于是有: :
∣ d ( x n , y n ) − d ( x , y ) ∣ ≤ d ( x n , x ) + d ( y n , y ) → ( n → ∞ ) . |d(x_n, y_n) - d(x, y)| \leq d(x_n, x) + d(y_n, y) \to (n \to \infty). d(xn,yn)d(x,y)d(xn,x)+d(yn,y)(n).

距 离 空 间 中 收 敛 的 “ 含 义 ” 距离空间中收敛的“含义”
下 面 在 一 些 距 离 空 间 中 , 我 们 研 究 收 敛 的 “ 具 体 含 义 ” . 下面在一些距离空间中,我们研究收敛的“具体含义”. .

例 1.1.13 R m 空 间 , 设 x n = ( ξ 1 ( n ) , ξ 2 ( n ) , ⋯   , ξ m ( n ) ) ( n = 1 , 2 , ⋯   ) , 例1.1.13 R^m 空间,设 x_n = (\xi_1^{(n)}, \xi_2^{(n)}, \cdots, \xi_m^{(n)}) (n = 1, 2, \cdots), 1.1.13Rm,xn=(ξ1(n),ξ2(n),,ξm(n))(n=1,2,),
x = ( ξ 1 , ξ 2 , ⋯   , ξ m ) ∈ R m , 则 d ( x n , x ) → 0 , 等 价 于 \qquad x = (\xi_1, \xi_2, \cdots, \xi_m) \in R^m, 则 d(x_n, x) \to 0, 等价于 x=(ξ1,ξ2,,ξm)Rm,d(xn,x)0,
ξ i ( n ) → ξ i ( n → ∞ ) , i = 1 , 2 , ⋯   , m . ( 1.1.11 ) \qquad \xi_i^{(n)} \to \xi_i(n \to \infty), i = 1, 2, \cdots, m. \quad (1.1.11) ξi(n)ξi(n),i=1,2,,m.(1.1.11)
在 R m 空 间 中 , 点 列 的 收 敛 , 等 价 于 按 坐 标 收 敛 . 在R^{m}空间中,点列的收敛,等价于按坐标收敛. Rm.
证 明 : d ( x n , x ) → 0 , 即 ( ξ 1 ( n ) − ξ 1 ) 2 + ⋯ + ( ξ n ( n ) − ξ m ) 2 → 0. ( n → ∞ ) 证明: d(x_n, x) \to 0, 即\sqrt{(\xi_1^{(n)} - \xi_1)^2 + \cdots + (\xi_n^{(n)} - \xi_m)^2} \to 0. (n \to \infty) :d(xn,x)0,(ξ1(n)ξ1)2++(ξn(n)ξm)2 0.(n)
∣ ξ i ( n ) − ξ i ∣ ≤ ( ∑ k = 1 m ∣ ξ k ( n ) − ξ k ∣ 2 ) 1 2 = d ( x n , x ) , i = 1 , 2 , ⋯   , m |\xi_i^{(n)} - \xi_i| \leq (\sum \limits_{k=1}^{m}|\xi_k^{(n)} - \xi_k|^2)^{\frac{1}{2}} = d(x_n, x), i = 1, 2, \cdots, m ξi(n)ξi(k=1mξk(n)ξk2)21=d(xn,x),i=1,2,,m
d ( x n , x ) = ( ∑ k − 1 m ∣ ξ k ( n ) − ξ k ∣ 2 ) 1 2 ≤ ∣ ξ 1 ( n ) − ξ 1 ∣ + ⋯ + ∣ ξ m ( n ) − ξ m ∣ d(x_n, x) = (\sum \limits_{k-1}^{m} |\xi_k^{(n)} - \xi_k|^2)^{\frac{1}{2}} \leq |\xi_1^{(n)} - \xi_1| + \cdots + |\xi_m^{(n)} - \xi_m| d(xn,x)=(k1mξk(n)ξk2)21ξ1(n)ξ1++ξm(n)ξm
即 可 得 到 结 论 ( 空 间 中 点 列 的 收 敛 , 等 价 于 按 坐 标 收 敛 ) . 即可得到结论(空间中点列的收敛,等价于按坐标收敛). (,).

例 1.1.14 C [ a , b ] 空 间 . 例1.1.14 C[a, b]空间. 1.1.14C[a,b].
C [ a , b ] 中 的 收 敛 性 是 函 数 列 在 [ a , b ] 上 的 一 致 收 敛 . C[a, b]中的收敛性是函数列在[a, b]上的一致收敛. C[a,b][a,b].
设 x n ( t ) ( n = 1 , 2 , ⋯   ) , x ( t ) ∈ C [ a , b ] , 且 d ( x n , x ) → 0 , 即 设x_n(t) (n=1, 2, \cdots), x(t) \in C[a, b],且d(x_n, x) \to 0, 即 xn(t)(n=1,2,),x(t)C[a,b],d(xn,x)0,
max ⁡ a ≤ t ≤ b ∣ x n ( t ) − x ( t ) ∣ → 0 ( n → ∞ ) . \qquad \max \limits_{a \leq t \leq b}|x_n(t) - x(t) | \to 0 (n \to \infty). atbmaxxn(t)x(t)0(n).
于 是 对 ∀ ε ≥ 0 , ∃ N , 当 n ≥ N 时 , 对 ∀ t ∈ [ a , b ] , 有 于是对 \forall \varepsilon \geq 0, \exists N, 当n \geq N时,对 \forall t \in [a, b], 有 ε0,N,nN,t[a,b],
∣ x n ( t ) − x ( t ) ∣ ≤ max ⁡ a ≤ t ≤ b ∣ x n ( t ) − x ( t ) ∣ < ε , \qquad |x_n(t) - x(t) | \leq \max \limits_{a \leq t \leq b} | x_n(t) - x(t) | < \varepsilon, xn(t)x(t)atbmaxxn(t)x(t)<ε,
即 : x n ( t ) 一 致 收 敛 到 x ( t ) . 即: x_n(t) 一致收敛到 x(t). :xn(t)x(t).
反 之 , x n ( t ) 一 致 收 敛 到 x ( t ) 可 以 推 出 d ( x n , x ) → 0. 反之,x_n(t)一致收敛到x(t)可以推出d(x_n, x) \to 0. xn(t)x(t)d(xn,x)0.
事 实 上 , x n ( t ) 一 致 收 敛 到 x ( t ) , 即 : 事实上,x_n(t)一致收敛到x(t),即: xn(t)x(t),:
对 ∀ ε ≥ 0 , ∃ N , 当 n ≥ N 时 , 对 ∀ t ∈ [ a , b ] , 有 对\forall \varepsilon \geq 0, \exists N, 当n \geq N时, 对\forall t \in [a, b], 有 ε0,N,nN,t[a,b],
$\qquad | x_n(t) - x(t) | < \varepsilon, $
上 式 两 边 对 t ∈ [ a , b ] 取 最 大 值 , 则 上式两边对t \in [a, b]取最大值, 则 t[a,b],
max ⁡ a ≤ t ≤ b ∣ x n ( t ) − x ( t ) ∣ ≤ ε \qquad \max \limits_{a \leq t \leq b} |x_n(t) - x(t) | \leq \varepsilon atbmaxxn(t)x(t)ε
说 明 x n → x ( n → ∞ ) 说明 x_n \to x (n \to \infty) xnx(n)
即 C [ a , b ] 中 的 收 敛 是 函 数 列 在 [ a , b ] 上 的 一 致 收 敛 . 即C[a, b]中的收敛是函数列在[a, b]上的一致收敛. C[a,b][a,b].

例 1.1.15 设 X 表 示 由 [ 0 , 1 ] 区 间 上 全 体 连 续 函 数 组 成 的 集 合 , 定 义 例1.1.15 设X表示由[0, 1]区间上全体连续函数组成的集合,定义 1.1.15X[0,1],
d 2 ( x , y ) = { ∫ 0 1 ∣ x ( t ) − y ( t ) ∣ 2 d t } 1 2 ( 1.1.12 ) d_2(x, y) = \lbrace \int_0^1 |x(t) - y(t)| ^2 dt \rbrace ^{\frac{1}{2}} \quad (1.1.12) d2(x,y)={01x(t)y(t)2dt}21(1.1.12)
可 以 证 明 , d 2 ( x , y ) 是 X 上 定 义 的 距 离 ( 证 明 见 第 二 章 第 2.2.3 节 ) 可以证明,d_2(x, y) 是X上定义的距离(证明见第二章第2.2.3节) d2(x,y)X(2.2.3)
考 虑 ( X , d 2 ) 中 的 点 列 { x n } , x n ( t ) = { 1 − n t , 0 ≤ t ≤ 1 / n , 0 , 1 / n < t ≤ 1. 考虑(X, d_2)中的点列\lbrace x_n \rbrace, x_n(t) = \left \lbrace \begin{array}{l} 1 - nt, 0 \leq t \leq 1/n, \\ 0, \qquad 1/n < t \leq 1. \end{array} \right. (X,d2){xn},xn(t)={1nt,0t1/n,0,1/n<t1.
则 { x n } 收 敛 到 x 0 ≡ 0. 则\lbrace x_n \rbrace 收敛到x_0 \equiv 0. {xn}x00.
事 实 上 , 事实上, ,
d 2 ( x n , x 0 ) = { ∫ 0 1 ∣ x n ( t ) − x 0 ( t ) ∣ 2 d t } 1 2 d_2(x_n, x_0) = \lbrace \int_0^1 |x_n(t) - x_0(t)| ^2 dt \rbrace ^{\frac{1}{2}} d2(xn,x0)={01xn(t)x0(t)2dt}21
= { ∫ 0 1 n ( 1 − n t ) 2 d t } 1 2 = ( 3 n ) − 1 2 → 0 =\lbrace \int_0^{\frac{1}{n}}(1-nt)^2 dt \rbrace ^{\frac{1}{2}} = (3n)^{-\frac{1}{2}} \to 0 ={0n1(1nt)2dt}21=(3n)210
图1.1.3 函数列
注 : 上 述 { x n } 在 距 离 ( 1.1.7 ) 下 也 收 敛 到 x 0 . 注:上述\lbrace x_n \rbrace 在距离(1.1.7)下也收敛到x_0. :{xn}(1.1.7)x0.
d ( x , y ) = ∫ 0 1 ∣ x ( t ) − y ( t ) ∣ d t ( 1.1.7 ) d(x, y) = \int_0^1 |x(t) - y(t)| dt \quad (1.1.7) d(x,y)=01x(t)y(t)dt(1.1.7)
注 2 : 由 于 x n ( 0 ) ≡ 1 , { x n } 并 不 一 致 收 敛 到 x 0 . 注2:由于x_n(0) \equiv 1, \lbrace x_n \rbrace 并不一致收敛到 x_0. 2:xn(0)1,{xn}x0.
( 甚 至 x n ( t ) 都 不 是 每 点 收 敛 到 x 0 ( t ) ) (甚至 x_n(t) 都不是每点收敛到x_0(t)) (xn(t)x0(t))
这 说 明 这 些 空 间 中 点 列 ( 函 数 列 ) 的 收 敛 与 C [ a , b ] 中 点 列 的 收 敛 在 “ 具 体 意 义 ” 下 有 很 大 不 同 . 这说明这些空间中点列(函数列)的收敛与C[a, b]中点列的收敛\\\\ 在“具体意义”下有很大不同. ()C[a,b].

例 1.1.16 在 C [ 0 , 1 ] 中 我 们 重 新 考 虑 上 面 的 例 子 . 例1.1.16 在C[0, 1]中我们重新考虑上面的例子. 1.1.16C[0,1].
对 于 ∀ n , 都 有 d ( x n , x 0 ) ≡ 1 , 于 是 { x n } 不 收 敛 于 x 0 . 对于\forall n, 都有d(x_n, x_0) \equiv 1, 于是\lbrace x_n \rbrace不收敛于 x_0. n,d(xn,x0)1,{xn}x0.
初 学 者 可 能 会 认 为 { x n } 趋 近 于 y 0 , 其 中 初学者可能会认为\lbrace x_n \rbrace 趋近于y_0,其中 {xn}y0,
y 0 ( t ) = { 1 , t = 0 , 0 , 0 < t < 1. \qquad y_0(t) = \left \lbrace \begin{array}{l}1, \quad t = 0, \\ 0, 0 < t < 1. \end{array} \right. y0(t)={1,t=0,0,0<t<1.
但 是 要 注 意 y 0 ∈ ‾ C [ 0 , 1 ] , 于 是 { x n } 不 趋 近 于 y 0 . 但是要注意y_0 \overline{\in} C[0, 1],于是\lbrace x_n \rbrace 不趋近于y_0. y0C[0,1],{xn}y0.
事 实 上 , 对 ∀ N , ∃ n , 2 n > N , 有 事实上,对\forall N, \exists n, 2n > N, 有 N,n,2n>N,
d ( x n , x 2 n ) = 1 2 , \qquad d(x_n, x_{2n}) = \dfrac{1}{2}, d(xn,x2n)=21,
可 见 在 空 间 C [ 0 , 1 ] 中 , 点 列 { x n } 不 收 敛 . 可见在空间C[0, 1]中,点列\lbrace x_n \rbrace 不收敛. C[0,1]{xn}.
注 : 由 上 述 例 子 可 知 , 同 一 个 点 列 , 在 不 同 的 距 离 空 间 中 收 敛 性 会 不 相 同 . 注:由上述例子可知,同一个点列,在不同的距离空间中收敛性会不相同. :,.

例 1.1.17 空 间 s . 例1.1.17 空间s. 1.1.17s.
设 s = { { ξ n } } , 即 全 体 实 数 列 组 成 的 集 合 . 定 义 设s = \lbrace \lbrace \xi_n \rbrace \rbrace,即全体实数列组成的集合.定义 s={{ξn}},.
d ( x , y ) = ∑ k = 1 ∞ 1 2 k ∣ ξ k − η k ∣ 1 + ∣ ξ k − η k ∣ ( 1.1.13 ) \qquad d(x, y) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|} \quad (1.1.13) d(x,y)=k=12k11+ξkηkξkηk(1.1.13)
其 中 x = { ξ k } , y = { η k } , 则 其中 x = \lbrace \xi_k \rbrace, y = \lbrace \eta_k \rbrace, 则 x={ξk},y={ηk},
( 1 ) s 为 距 离 空 间 ; (1) s 为距离空间; (1)s;
( 2 ) s 中 的 收 敛 是 按 坐 标 收 敛 , 即 (2) s 中的收敛是按坐标收敛,即 (2)s,
设 x n = ( ξ 1 ( n ) , ξ 2 ( n ) , ⋯   , ξ k ( n ) , ⋯   ) ∈ s , 设 x_n = (\xi_1^{(n)}, \xi_2^{(n)}, \cdots, \xi_k^{(n)}, \cdots ) \in s, xn=(ξ1(n),ξ2(n),,ξk(n),)s,
x = ( ξ 1 , ξ 2 , ⋯   , ξ k , ⋯   ) ∈ s , x = (\xi_1, \xi_2, \cdots, \xi_k, \cdots) \in s, x=(ξ1,ξ2,,ξk,)s,
则 “ d ( x n , x ) → 0 ( n → ∞ ) ” ⇔ ∀ k , ξ k ( n ) → ξ k ( n → ∞ ) 则“d(x_n, x) \to 0 (n \to \infty)” \Leftrightarrow \forall k, \xi_k^{(n)} \to \xi_k (n \to \infty) d(xn,x)0(n)k,ξk(n)ξk(n)
分 析 ( 1 ) : 要 证 s 为 距 离 空 间 , 只 要 证 明 在 s 中 所 定 义 的 距 离 d 满 足 距 离 定 义 4 条 即 可 . 分析(1):要证s为距离空间,只要证明在s中所定义的距离d满足距离定义4条即可. (1)ssd4.
其 中 ( 1 ) , ( 2 ) , ( 3 ) 显 然 成 立 , 只 要 验 证 ( 4 ) 三 角 不 等 式 成 立 , 即 其中(1),(2),(3)显然成立,只要验证(4)三角不等式成立,即 (1),(2),(3),(4),
d ( x , y ) ≤ d ( x , z ) + d ( z , y ) \qquad d(x, y) \leq d(x, z) + d(z, y) d(x,y)d(x,z)+d(z,y)
利 用 函 数 φ ( t ) = t 1 + t 的 单 增 性 , 以 及 三 角 绝 对 值 不 等 式 , 可 以 加 以 证 明 . 利用函数 \varphi(t) = \dfrac{t}{1 + t}的单增性,以及三角绝对值不等式,可以加以证明. φ(t)=1+tt,,.
证 明 : ( 1 ) : 验 证 距 离 定 义 的 条 件 ( 4 ) 成 立 . 证明:(1):验证距离定义的条件(4)成立. :(1):(4).
考 虑 φ ( t ) = t 1 + t = 1 − 1 1 + t , t ∈ ( 0 , ∞ ) , φ ( t ) 是 单 增 的 . 考虑\varphi(t) = \dfrac{t}{1+t} = 1 - \dfrac{1}{1 + t}, t \in (0, \infty), \varphi(t)是单增的. φ(t)=1+tt=11+t1,t(0,),φ(t).
设 x = { ξ k } , y = { η k } , z = { ζ k } , 由 于 设x = \lbrace \xi_k \rbrace, y = \lbrace \eta_k \rbrace, z = \lbrace \zeta_k \rbrace, 由于 x={ξk},y={ηk},z={ζk},
∣ ξ k − η k ∣ ≤ ∣ ξ k − ζ k ∣ + ∣ ζ k − η k ∣ |\xi_k - \eta_k| \leq |\xi_k - \zeta_k| + |\zeta_k - \eta_k| ξkηkξkζk+ζkηk
结 合 φ ( t ) 是 单 增 的 , 则 结合\varphi(t)是单增的, 则 φ(t),
∣ ξ k − η k ∣ 1 + ∣ ξ k − η k ∣ ≤ ∣ ξ k − ζ k ∣ + ∣ ζ k − η k ∣ 1 + ∣ ξ k − ζ k ∣ + ∣ ζ k − η k ∣ \dfrac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|} \leq \dfrac{|\xi_k - \zeta_k| + |\zeta_k - \eta_k|}{1 + |\xi_k - \zeta_k| + |\zeta_k - \eta_k|} 1+ξkηkξkηk1+ξkζk+ζkηkξkζk+ζkηk
≤ ∣ ξ k − ζ k ∣ 1 + ∣ ξ k − ζ k ∣ + ∣ ζ k − η k ∣ 1 + ∣ ζ k − η k ∣ \leq \dfrac{|\xi_k - \zeta_k|}{1 + |\xi_k - \zeta_k|} + \dfrac{|\zeta_k - \eta_k|}{1 + |\zeta_k - \eta_k|} 1+ξkζkξkζk+1+ζkηkζkηk
在 上 面 不 等 式 两 边 乘 以 1 2 k 并 求 和 , 有 在上面不等式两边乘以\dfrac{1}{2^k}并求和,有 2k1,
d ( x , y ) = ∑ k = 1 ∞ 1 2 k ∣ ξ k − η k ∣ 1 + ∣ ξ k − η k ∣ d(x, y) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|} d(x,y)=k=12k11+ξkηkξkηk
≤ ∑ k = 1 ∞ 1 2 k ∣ ξ k − ζ k ∣ 1 + ∣ ξ k − ζ k ∣ + ∑ k = 1 ∞ 1 2 k ∣ ζ k − η k ∣ 1 + ∣ ζ k − η k ∣ \leq \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k}\dfrac{|\xi_k - \zeta_k|}{1 + |\xi_k - \zeta_k|} + \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\zeta_k - \eta_k|}{1 + |\zeta_k - \eta_k|} k=12k11+ξkζkξkζk+k=12k11+ζkηkζkηk
= d ( x , z ) + d ( z , y ) = d(x, z) + d(z, y) =d(x,z)+d(z,y)
我 们 把 这 个 距 离 空 间 记 为 s . 我们把这个距离空间记为s. s.
分 析 ( 2 ) : 要 证 明 d ( x n , x ) → 0 ⇔ ∀ k , ξ k ( n ) → ξ k . 分析(2):要证明d(x_n, x) \to 0 \Leftrightarrow \forall k, \xi_k^{(n)} \to \xi_k. (2):d(xn,x)0k,ξk(n)ξk.
必 要 性 要 证 : 对 于 任 意 给 定 的 k 0 ∈ N , 要 能 做 到 : 必要性要证:对于任意给定的k_0 \in N, 要能做到: :k0N,:
∀ ε > 0 , ∃ N , ∀ n > N , 有 ∣ ξ k 0 ( n ) − ξ k 0 ∣ < ε \forall \varepsilon > 0, \exists N, \forall n > N, 有|\xi_{k_0}^{(n)} - \xi_{k_0}| < \varepsilon ε>0,N,n>N,ξk0(n)ξk0<ε
证 明 ( 2 ) : 必 要 性 . 证明(2):必要性. (2):.
对 于 任 意 给 定 的 k 0 , 对 于 ∀ ε > 0 , 令 ε 0 = 1 2 k 0 ε 1 + ε > 0 , 对于任意给定的k_0, 对于\forall \varepsilon > 0, 令 \varepsilon_0 = \dfrac{1}{2^{k_0}} \dfrac{\varepsilon}{1 + \varepsilon} > 0, k0,ε>0,ε0=2k011+εε>0,
当 n > N 时 , 有 d ( x n , x ) < ε 0 , 即 : 当 n > N时, 有d(x_n, x) < \varepsilon_0,即: n>N,d(xn,x)<ε0,:
$d(x_n, x) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|} < \varepsilon_0 = \dfrac{1}{2^{k_0}} \dfrac{\varepsilon}{1 + \varepsilon}, $
由 于 每 项 都 是 正 的 , 于 是 我 们 有 由于每项都是正的,于是我们有 ,
1 2 k 0 ∣ ξ k 0 ( n ) − ξ k 0 ∣ 1 + ∣ ξ k 0 ( n ) − ξ k 0 ∣ < 1 2 k 0 ε 1 + ε , ( n > N ) \dfrac{1}{2^{k_0}} \dfrac{|\xi_{k_0}^{(n)} - \xi_{k_0}|}{1 + |\xi_{k_0}^{(n)} - \xi_{k_0}|} < \dfrac{1}{2^{k_0}} \dfrac{\varepsilon}{1 + \varepsilon}, (n > N) 2k011+ξk0(n)ξk0ξk0(n)ξk0<2k011+εε,(n>N)
$结合 \varphi(t) = \dfrac{t}{1 + t} 是单增的,有 |\xi_{k_0}^{(n)} - \xi_{k_0}| < \varepsilon, $
即 ξ k 0 ( n ) → ξ k 0 ( n → ∞ ) 即 \xi_{k_0}^{(n)} \to \xi_{k_0} (n \to \infty) ξk0(n)ξk0(n)
分 析 ( 2 ) : 充 分 性 我 们 要 证 : 分析(2):充分性我们要证: (2):
∀ k , ξ k ( n ) → ξ k ( n → ∞ ) ⇒ d ( x n , x ) → 0 ( n → ∞ ) \forall k, \xi_k^{(n)} \to \xi_k(n \to \infty) \Rightarrow d(x_n, x) \to 0 (n \to \infty) k,ξk(n)ξk(n)d(xn,x)0(n)
即 要 证 明 : d ( x n , x ) = ∑ k = 1 ∞ 1 2 k ∣ ξ k ( n ) − ξ k ∣ 1 + ∣ ξ k ( n ) − ξ k ∣ → 0 ( n → ∞ ) 即要证明:d(x_n, x) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|} \to 0 (n \to \infty) :d(xn,x)=k=12k11+ξk(n)ξkξk(n)ξk0(n)
注 意 到 收 敛 的 级 数 , 充 分 靠 后 面 的 无 穷 多 项 的 和 可 任 意 小 . 对 于 前 面 的 有 限 项 , 注意到收敛的级数,充分靠后面的无穷多项的和可任意小.对于前面的有限项, .
由 条 件 可 以 找 到 共 同 的 N , 当 n > N 时 , 级 数 中 的 这 些 项 都 一 致 很 小 . 由条件可以找到共同的N,当n > N时,级数中的这些项都一致很小. N,n>N,.
证 明 ( 2 ) 充 分 性 . 证明(2)充分性. (2).
对 于 ∀ ε > 0 , ∃ K , 使 得 ∑ k = K + 1 ∞ 1 2 k < 1 2 ε 对于\forall \varepsilon > 0, \exists K, 使得\sum \limits_{k=K+1}^{\infty} \dfrac{1}{2^k} < \dfrac{1}{2} \varepsilon ε>0,K,使k=K+12k1<21ε
由 于 ξ k ( n ) → ξ k ( n → ∞ ) ( k = 1 , 2 , ⋯   , K ) , 由于\xi_k^{(n)} \to \xi_k(n \to \infty)(k=1, 2, \cdots, K), ξk(n)ξk(n)(k=1,2,,K),
所 以 存 在 N , 当 n > N 时 , ∣ ξ k ( n ) − ξ k ∣ < ε 2 ( k = 1 , 2 , ⋯   , K ) 所以存在N,当n > N时, |\xi_k^{(n)} - \xi_k| < \dfrac{\varepsilon}{2} (k = 1, 2, \cdots, K) N,n>N,ξk(n)ξk<2ε(k=1,2,,K)
于 是 当 n > N 时 , 于是当n > N时, n>N,
d ( x n , x ) = ∑ k = 1 ∞ 1 2 k ∣ ξ k ( n ) − ξ k ∣ 1 + ∣ ξ k ( n ) − ξ k ∣ d(x_n, x) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|} d(xn,x)=k=12k11+ξk(n)ξkξk(n)ξk
= ∑ k = 1 K 1 2 k ∣ ξ k ( n ) − ξ k ∣ 1 + ∣ ξ k ( n ) − ξ k ∣ + ∑ k = K + 1 ∞ 1 2 k ∣ ξ k ( n ) − ξ k ∣ 1 + ∣ ξ k ( n ) − ξ k ∣ =\sum \limits_{k=1}^{K} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|} + \sum \limits_{k=K+1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|} =k=1K2k11+ξk(n)ξkξk(n)ξk+k=K+12k11+ξk(n)ξkξk(n)ξk
< 1 2 ε ∑ k = 1 K 1 2 k + ∑ k = K + 1 ∞ 1 2 k < ε < \dfrac{1}{2} \varepsilon \sum \limits_{k=1}^{K} \dfrac{1}{2^k} + \sum \limits_{k=K+1}^{\infty} \dfrac{1}{2^k} < \varepsilon <21εk=1K2k1+k=K+12k1<ε
即 { x n } 在 s 中 收 敛 到 x . 即\lbrace x_n \rbrace 在s 中收敛到x. {xn}sx.
$注:在上面有关级数的证明中, 由级数的收敛性, 先让后面项的和“很小”, $
再 对 前 面 的 有 限 项 进 行 估 计 , 这 是 很 常 用 的 方 法 . 再对前面的有限项进行估计,这是很常用的方法. ,.

例 1.1.18 空 间 S . 例1.1.18 空间S. 1.1.18S.
S 中 的 元 素 为 E 上 全 体 几 乎 处 处 有 限 的 可 测 函 数 , S中的元素为E上全体几乎处处有限的可测函数, SE,
其 中 E ⊂ R 是 一 个 L e b e s g u e 可 测 集 , 且 m E < ∞ 其中E \subset R是一个Lebesgue 可测集, 且m E < \infty ERLebesgue,mE<
对 于 x = x ( t ) , y = y ( t ) ∈ S , 定 义 对于x = x(t), y = y(t) \in S, 定义 x=x(t),y=y(t)S,
d ( x , y ) = ∫ E ∣ x ( t ) − y ( t ) ∣ 1 + ∣ x ( t ) − y ( t ) ∣ d t \qquad d(x, y) = \int_E \dfrac{|x(t) - y(t)|}{1 + |x(t) - y(t)|} dt d(x,y)=E1+x(t)y(t)x(t)y(t)dt
则 则
( 1 ) S 为 距 离 空 间 ; (1) S为距离空间; (1)S;
( 2 ) S 中 的 收 敛 是 依 测 度 收 敛 . (2) S中的收敛是依测度收敛. (2)S.
即 d ( x n , x ) → 0 ( n → ∞ ) 等 价 于 x n → m x ( n → ∞ ) ( 依 测 度 收 敛 ) 即d(x_n, x) \to 0 (n \to \infty)等价于x_n \stackrel{m}{\to} x(n \to \infty)(依测度收敛) d(xn,x)0(n)xnmx(n)()
( 1 ) 用 例 1.1.17 的 方 法 可 证 明 S 是 一 个 距 离 空 间 . (1)用例1.1.17的方法可证明S是一个距离空间. (1)1.1.17S.
( 2 ) 分 析 ( ⇒ ) : (2)分析(\Rightarrow): (2)():
由 d ( x n , x ) → 0 要 推 出 x n → m x ( n → ∞ ) 由d(x_n, x) \to 0 要推出x_n \stackrel{m}{\to} x(n \to \infty) d(xn,x)0xnmx(n)
什 么 是 依 测 度 收 敛 ? 什么是依测度收敛? ?
x n → m x ( n → ∞ ) ⇔ 对 于 ∀ σ > 0 , x_n \stackrel{m}{\to} x (n \to \infty) \Leftrightarrow 对于\forall \sigma > 0, xnmx(n)σ>0,
m { t ∈ E ∣ ∣ x n ( t ) − x ( t ) ∣ ≥ σ } → 0 ( n → ∞ ) , m \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma \rbrace \to 0 (n \to \infty), m{tExn(t)x(t)σ}0(n),
即 对 于 ∀ σ > 0 , ∀ ε > 0 , 存 在 N , 当 n > N 时 , 即对于\forall \sigma > 0, \forall \varepsilon > 0, 存在N,当n > N时, σ>0,ε>0,N,n>N,
m { t ∈ E ∣ ∣ x n ( t ) − x ( t ) ∣ ≥ σ } < ε m \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma \rbrace < \varepsilon m{tExn(t)x(t)σ}<ε
我 们 将 集 合 E 分 成 两 部 分 : 我们将集合E分成两部分: E:
对 于 任 意 给 定 的 σ > 0 和 自 然 数 n , 令 对于任意给定的\sigma > 0 和自然数n, 令 σ>0n,
$E_1 = \lbrace t \in E | |x_n(t) - x(t) | < \sigma \rbrace, $
$E_2 = \lbrace t \in E | |x_n(t) - x(t) | \geq \sigma \rbrace, $
E = E 1 ∪ E 2 E = E_1 \cup E_2 E=E1E2
利 用 函 数 t 1 + t 单 增 来 证 明 利用函数\dfrac{t}{1 + t} 单增来证明 1+tt
m { t ∈ E ∣ ∣ x n ( t ) − x ( t ) ∣ ≥ σ } → 0 ( n → ∞ ) m \lbrace t \in E | |x_n(t) - x(t) | \geq \sigma \rbrace \to 0 (n \to \infty) m{tExn(t)x(t)σ}0(n)
证 明 ( 2 ) : 对 于 任 意 给 定 的 σ > 0 , 由 证明(2):对于任意给定的\sigma > 0,由 (2):σ>0,
d ( x n , x ) = ∫ E ∣ x n ( t ) − x ( t ) ∣ 1 + ∣ x n ( t ) − x ( t ) ∣ d t d(x_n, x) = \int_E \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt d(xn,x)=E1+xn(t)x(t)xn(t)x(t)dt
≥ ∫ { t ∈ E ∣ ∣ x n ( t ) − x ( t ) ∣ ≥ σ } ∣ x n ( t ) − x ( t ) ∣ 1 + ∣ x n ( t ) − x ( t ) ∣ d t \geq \int _{ \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma \rbrace} \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt {tExn(t)x(t)σ}1+xn(t)x(t)xn(t)x(t)dt
因 为 t 1 + t 单 增 , 而 ∣ x n ( t ) − x ( t ) ∣ ≥ σ , 于 是 因为\dfrac{t}{1+t}单增,而|x_n(t) - x(t)| \geq \sigma, 于是 1+tt,xn(t)x(t)σ,
d ( x n , x ) ≥ ∫ { t ∈ E ∣ ∣ x n ( t ) − x ( t ) ∣ ≥ σ } σ 1 + σ d t d(x_n, x) \geq \int_{ \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma \rbrace } \dfrac{\sigma}{1 + \sigma} dt d(xn,x){tExn(t)x(t)σ}1+σσdt
= σ 1 + σ m { t ∈ E ∣ ∣ x n ( t ) − x ( t ) ∣ ≥ σ } ( 1.1.14 ) = \dfrac{\sigma}{1+\sigma} m \lbrace t \in E | |x_n(t) - x(t) | \geq \sigma \rbrace \quad (1.1.14) =1+σσm{tExn(t)x(t)σ}(1.1.14)
由 于 d ( x n , x ) → 0 ( n → ∞ ) , σ 给 定 , 由 不 等 式 由于 d(x_n, x) \to 0(n \to \infty), \sigma 给定, 由不等式 d(xn,x)0(n),σ,
d ( x n , x ) ≥ σ 1 + σ m { t ∈ E ∣ ∣ x n ( t ) − x ( t ) ∣ ≥ σ } d(x_n, x) \geq \dfrac{\sigma}{1+\sigma} m \lbrace t \in E | | x_n(t) - x(t)| \geq \sigma \rbrace d(xn,x)1+σσm{tExn(t)x(t)σ}
推 出 推出
m { t ∈ E ∣ ∣ x n ( t ) − x ( t ) ∣ ≥ σ } → 0 ( n → ∞ ) m \lbrace t \in E | |x_n(t) - x(t) | \geq \sigma \rbrace \to 0 (n \to \infty) m{tExn(t)x(t)σ}0(n)
反 之 , 由 x n ( t ) → m x ( t ) ( n → ∞ ) , 可 推 出 反之,由x_n(t) \stackrel{m}{\to} x(t) (n \to \infty),可推出 ,xn(t)mx(t)(n),
d ( x n , x ) → 0 ( n → ∞ ) . 事 实 上 , d(x_n, x) \to 0 (n \to \infty).事实上, d(xn,x)0(n).,
d ( x n , x ) = ∫ E ∣ x n ( t ) − x ( t ) ∣ 1 + ∣ x n ( t ) − x ( t ) ∣ d t d(x_n, x) = \int_E \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt d(xn,x)=E1+xn(t)x(t)xn(t)x(t)dt
= ∫ E 1 ∣ x n ( t ) − x ( t ) ∣ 1 + ∣ x n ( t ) − x ( t ) ∣ d t + ∫ E 2 ∣ x n ( t ) − x ( t ) ∣ 1 + ∣ x n ( t ) − x ( t ) ∣ d t = \int_{E_1} \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt + \int_{E_2} \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt =E11+xn(t)x(t)xn(t)x(t)dt+E21+xn(t)x(t)xn(t)x(t)dt
≤ ∫ E 1 σ 1 + σ d t + ∫ E 2 ∣ x n ( t ) − x ( t ) ∣ 1 + ∣ x n ( t ) − x ( t ) ∣ d t \leq \int_{E_1}\dfrac{\sigma}{1+\sigma} dt + \int_{E_2} \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt E11+σσdt+E21+xn(t)x(t)xn(t)x(t)dt
≤ σ 1 + σ m E + m E 2 \leq \dfrac{\sigma}{1+\sigma} m E + mE_2 1+σσmE+mE2
对 于 ∀ ε > 0 , 取 σ 0 m E < ε 2 , 对 于 此 σ 0 > 0 , 上 式 成 立 . 对于\forall \varepsilon > 0, 取\sigma_0 m E < \dfrac{\varepsilon}{2},对于此\sigma_0 > 0, 上式成立. ε>0,σ0mE<2ε,σ0>0,.
由 由
m E 2 = m { t ∈ E ∣ ∣ x n ( t ) − x ( t ) ∣ ≥ σ 0 } → 0 , m E_2 = m \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma_0 \rbrace \to 0, mE2=m{tExn(t)x(t)σ0}0,
存 在 N , 当 n ≥ N 时 , m E 2 < ε 2 . 存在N, 当 n \geq N 时, m E_2 < \dfrac{\varepsilon}{2}. N,nN,mE2<2ε.
( 这 里 用 到 了 依 测 度 收 敛 ) (这里用到了依测度收敛) ()
于 是 于是
d ( x n , x ) ≤ σ 0 1 + σ 0 m E + m E 2 d(x_n, x) \leq \dfrac{\sigma_0}{1+\sigma_0} m E + m E_2 d(xn,x)1+σ0σ0mE+mE2
$ < \sigma_0 m E + \dfrac{\varepsilon}{2} = \dfrac{\varepsilon}{2} + \dfrac{\varepsilon}{2} = \varepsilon$
即 d ( x n , x ) → 0 ( n → ∞ ) 即 d(x_n, x) \to 0 (n \to \infty) d(xn,x)0(n)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值