KaTeX parse error: Undefined control sequence: \S at position 14: \color{blue}{\̲S̲ ̲1.1 距离空间的基本概念}
1.1.1 距 离 空 间 的 定 义 \color{blue}{1.1.1 距离空间的定义} 1.1.1距离空间的定义
在高等数学中引进的最重要的概念就是极限.
定义在R上的函数的许多重要性质是由极限来刻画的.
连续、微分、积分、无穷级数都是由极限定义的.
极限是研究函数的重要工具.
把极限这一概念“类比”地推广到更一般的空间.
所谓空间–是指集合加上一定的“结构”.
$一维空间:数列的极限, x_n \to x(n \to \infty), 如果对于 \forall \varepsilon > 0, \\
\exists 正整数 N, 当n \geq N时, 有 |x_n - x| < \varepsilon, \\
则称数列 x_n \to x (n \to \infty).在这里|x_n - x| 是x_n 和 x 之间的距离 d(x_n, x).\\
即:当n充分大时, x_n 和 x之间的距离 d(x_n, x)可以任意小, 则称数列 x_n \to x(n \to \infty). $
二
维
情
况
:
我
们
可
以
类
似
地
定
义
点
列
的
极
限
.
二维情况:我们可以类似地定义点列的极限.
二维情况:我们可以类似地定义点列的极限.
所
不
同
的
是
x
n
和
x
之
间
的
距
离
是
平
面
上
两
点
之
间
的
距
离
.
所不同的是x_n和x之间的距离是平面上两点之间的距离.
所不同的是xn和x之间的距离是平面上两点之间的距离.
点
列
x
n
=
(
ξ
n
,
η
n
)
→
x
=
(
ξ
,
η
)
(
n
→
∞
)
的
定
义
:
点列x_n = (\xi_n, \eta_n) \to x = (\xi, \eta)(n \to \infty)的定义:
点列xn=(ξn,ηn)→x=(ξ,η)(n→∞)的定义:
如
果
对
于
∀
ε
>
0
,
∃
正
整
数
N
,
当
n
≥
N
时
,
有
如果对于\forall \varepsilon > 0, \exists 正整数N, 当n \geq N时, 有
如果对于∀ε>0,∃正整数N,当n≥N时,有
$d(x_n, x) = \sqrt{(\xi_n - \xi)^2 + (\eta_n - \eta)^2 } < \varepsilon, $
则
称
点
列
x
n
=
(
ξ
n
,
η
n
)
→
x
=
(
ξ
,
η
)
(
n
→
∞
)
.
则称点列 x_n = (\xi_n, \eta_n) \to x = (\xi, \eta)(n \to \infty).
则称点列xn=(ξn,ηn)→x=(ξ,η)(n→∞).
所
不
同
的
只
是
距
离
d
(
x
n
,
x
)
的
具
体
表
示
形
式
.
所不同的只是距离d(x_n, x)的具体表示形式.
所不同的只是距离d(xn,x)的具体表示形式.
在
泛
函
分
析
中
,
我
们
将
研
究
更
一
般
的
“
空
间
”
以
及
在
这
些
“
空
间
”
上
定
义
的
“
函
数
”
、
“
映
射
”
,
进
一
步
讨
论
与
它
们
相
关
的
极
限
和
运
算
.
在泛函分析中,我们将研究更一般的“空间”以及在这些“空间”上定义的\\\\ “函数”、“映射”, 进一步讨论与它们相关的极限和运算.
在泛函分析中,我们将研究更一般的“空间”以及在这些“空间”上定义的“函数”、“映射”,进一步讨论与它们相关的极限和运算.
要
在
一
般
的
“
空
间
”
中
建
立
极
限
的
概
念
,
我
们
需
要
再
引
入
“
距
离
”
的
概
念
.
要在一般的“空间”中建立极限的概念,我们需要再引入“距离”的概念.
要在一般的“空间”中建立极限的概念,我们需要再引入“距离”的概念.
即
在
一
个
集
合
上
定
义
两
点
之
间
的
“
距
离
”
,
使
之
成
为
我
们
下
面
所
说
的
“
距
离
空
间
”
.
即在一个集合上定义两点之间的“距离”,使之成为我们下面所说的“距离空间”.
即在一个集合上定义两点之间的“距离”,使之成为我们下面所说的“距离空间”.
有
了
距
离
,
我
们
就
可
以
定
义
相
应
的
极
限
.
引
入
极
限
这
一
概
念
(
运
算
)
,
进
而
可
以
研
究
一
般
“
空
间
”
中
的
元
素
(
函
数
、
算
子
)
的
性
质
.
有了距离,我们就可以定义相应的极限.引入极限这一概念(运算),\\\\ 进而可以研究一般“空间”中的元素(函数、算子)的性质.
有了距离,我们就可以定义相应的极限.引入极限这一概念(运算),进而可以研究一般“空间”中的元素(函数、算子)的性质.
本
节
的
内
容
:
本节的内容:
本节的内容:
(
1
)
距
离
空
间
的
定
义
;
(1) 距离空间的定义;
(1)距离空间的定义;
(
2
)
距
离
空
间
的
例
子
;
(2)距离空间的例子;
(2)距离空间的例子;
(
3
)
距
离
空
间
中
的
收
敛
性
.
(3)距离空间中的收敛性.
(3)距离空间中的收敛性.
如
何
定
义
距
离
?
即
如
何
抽
象
出
极
限
的
本
质
特
征
?
如何定义距离?即如何抽象出极限的本质特征?
如何定义距离?即如何抽象出极限的本质特征?
设
x
,
y
是
平
面
上
两
点
:
x
=
(
x
1
,
x
2
)
,
y
=
(
y
1
,
y
2
)
.
设x, y是平面上两点:x = (x_1, x_2), y = (y_1, y_2).
设x,y是平面上两点:x=(x1,x2),y=(y1,y2).
两
点
间
的
距
离
为
:
d
(
x
,
y
)
=
(
x
1
−
y
1
)
2
+
(
x
2
−
y
2
)
2
.
两点间的距离为: d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.
两点间的距离为:d(x,y)=(x1−y1)2+(x2−y2)2.
它
满
足
:
它满足:
它满足:
1.
距
离
是
非
负
的
:
d
(
x
,
y
)
≥
0
;
2.
距
离
是
严
格
正
的
:
d
(
x
,
y
)
=
0
,
当
且
仅
当
x
=
y
;
3.
距
离
是
对
称
的
:
d
(
y
,
x
)
=
d
(
x
,
y
)
;
4.
距
离
满
足
三
角
不
等
式
(
两
边
之
和
大
于
第
三
边
)
:
d
(
x
,
y
)
≤
d
(
x
,
z
)
+
d
(
z
,
y
)
.
我
们
把
具
有
这
些
性
质
的
从
平
面
上
的
点
到
实
数
的
二
元
映
射
(
X
×
X
→
R
)
定
义
为
距
离
.
\color{blue}{1.距离是非负的:d(x, y) \geq 0; \\\\ 2.距离是严格正的:d(x, y) = 0,当且仅当 x = y; \\\\ 3.距离是对称的:d(y, x) = d(x, y); \\\\ 4.距离满足三角不等式(两边之和大于第三边):d(x, y) \leq d(x, z) + d(z, y). \\\\ 我们把具有这些性质的从平面上的点到实数的二元映射(X \times X \to R)定义为距离.}
1.距离是非负的:d(x,y)≥0;2.距离是严格正的:d(x,y)=0,当且仅当x=y;3.距离是对称的:d(y,x)=d(x,y);4.距离满足三角不等式(两边之和大于第三边):d(x,y)≤d(x,z)+d(z,y).我们把具有这些性质的从平面上的点到实数的二元映射(X×X→R)定义为距离.
定
义
1.1.1
(
距
离
空
间
定
义
)
设
X
是
任
意
非
空
集
合
,
对
于
X
中
的
任
何
点
x
,
y
,
均
有
一
个
实
数
d
(
x
,
y
)
与
它
对
应
,
且
满
足
:
定义1.1.1(距离空间定义)设X是任意非空集合,对于X中的任何点x,y,\\\\ 均有一个实数d(x, y)与它对应,且满足:
定义1.1.1(距离空间定义)设X是任意非空集合,对于X中的任何点x,y,均有一个实数d(x,y)与它对应,且满足:
(
1
)
d
(
x
,
y
)
≥
0
(
非
负
性
)
;
(1) d(x, y) \geq 0 (非负性);
(1)d(x,y)≥0(非负性);
(
2
)
d
(
x
,
y
)
=
0
,
当
且
仅
当
x
=
y
(
严
格
正
)
;
(2) d(x, y) = 0, 当且仅当 x = y (严格正);
(2)d(x,y)=0,当且仅当x=y(严格正);
(
3
)
d
(
y
,
x
)
=
d
(
x
,
y
)
(
对
称
性
)
;
(3) d(y, x) = d(x, y) (对称性);
(3)d(y,x)=d(x,y)(对称性);
(
4
)
d
(
x
,
y
)
≤
d
(
x
,
z
)
+
d
(
z
,
y
)
(
三
角
不
等
式
)
.
(4) d(x, y) \leq d(x, z) + d(z, y) (三角不等式).
(4)d(x,y)≤d(x,z)+d(z,y)(三角不等式).
则
称
d
(
x
,
y
)
为
X
中
的
一
个
距
离
.
则称 d(x, y)为X中的一个距离.
则称d(x,y)为X中的一个距离.
定
义
了
距
离
d
的
集
合
称
为
一
个
距
离
空
间
,
记
为
(
X
,
d
)
,
简
记
为
X
.
定义了距离d的集合称为一个距离空间,记为(X, d),简记为X.
定义了距离d的集合称为一个距离空间,记为(X,d),简记为X.
注
1
:
在
距
离
的
定
义
中
,
保
留
了
实
数
空
间
(
或
者
说
平
面
和
n
维
空
间
)
中
距
离
的
最
基
本
性
质
.
注1:在距离的定义中,保留了实数空间(或者说平面和n维空间)中距离的最基本性质.
注1:在距离的定义中,保留了实数空间(或者说平面和n维空间)中距离的最基本性质.
从
一
些
具
体
实
例
中
抽
象
出
问
题
的
本
质
特
征
,
加
以
概
括
,
给
出
在
一
般
意
义
下
的
定
义
,
使
之
能
够
运
用
于
更
加
广
阔
的
范
围
,
是
数
学
研
究
中
的
重
要
方
法
.
从一些具体实例中抽象出问题的本质特征,加以概括,给出在一般意义下的定义,\\\\ 使之能够运用于更加广阔的范围,是数学研究中的重要方法.
从一些具体实例中抽象出问题的本质特征,加以概括,给出在一般意义下的定义,使之能够运用于更加广阔的范围,是数学研究中的重要方法.
注
2
:
性
质
(
1
)
−
(
4
)
称
为
是
距
离
公
理
,
其
中
性
质
(
4
)
来
源
于
三
角
形
中
的
两
边
之
和
大
于
第
三
边
.
见
图
1.1.1
注2:性质(1)-(4)称为是距离公理,其中性质(4)来源于三角形中的两边之和大于第三边.\\\\ 见图1.1.1
注2:性质(1)−(4)称为是距离公理,其中性质(4)来源于三角形中的两边之和大于第三边.见图1.1.1
注
3
:
运
用
数
学
归
纳
法
,
可
把
三
角
不
等
式
推
广
为
:
注3:运用数学归纳法,可把三角不等式推广为:
注3:运用数学归纳法,可把三角不等式推广为:
d
(
x
1
,
x
n
)
≤
d
(
x
1
,
x
2
)
+
d
(
x
2
,
x
3
)
+
⋯
+
d
(
x
n
−
1
,
x
n
)
.
d(x_1, x_n) \leq d(x_1, x_2) + d(x_2, x_3) + \cdots + d(x_{n-1}, x_n).
d(x1,xn)≤d(x1,x2)+d(x2,x3)+⋯+d(xn−1,xn).
注
4
:
设
(
X
,
d
)
是
一
个
距
离
空
间
,
由
三
角
不
等
式
可
证
,
对
于
任
意
x
,
y
,
z
∈
X
,
有
注4:设(X, d)是一个距离空间,由三角不等式可证,对于任意x, y, z \in X, 有
注4:设(X,d)是一个距离空间,由三角不等式可证,对于任意x,y,z∈X,有
∣
d
(
x
,
y
)
−
d
(
y
,
z
)
∣
≤
d
(
x
,
z
)
|d(x, y) - d(y, z)| \leq d(x, z)
∣d(x,y)−d(y,z)∣≤d(x,z)
即:两边之差小于第三边.
d
(
x
,
z
)
+
d
(
y
,
z
)
≥
d
(
x
,
y
)
⇒
d
(
x
,
y
)
−
d
(
y
,
z
)
≤
d
(
x
,
z
)
;
d(x, z) + d(y, z) \geq d(x, y) \Rightarrow d(x, y) - d(y, z) \leq d(x, z);
d(x,z)+d(y,z)≥d(x,y)⇒d(x,y)−d(y,z)≤d(x,z);
d
(
x
,
z
)
+
d
(
x
,
y
)
≥
d
(
y
,
z
)
⇒
d
(
y
,
z
)
−
d
(
x
,
y
)
≤
d
(
x
,
z
)
;
d(x, z) + d(x, y) \geq d(y, z) \Rightarrow d(y, z) - d(x, y) \leq d(x, z);
d(x,z)+d(x,y)≥d(y,z)⇒d(y,z)−d(x,y)≤d(x,z);
1.1.2 距 离 空 间 的 例 \color{blue}{1.1.2 距离空间的例} 1.1.2距离空间的例
例
1.1.2
在
n
维
实
向
量
空
间
R
n
中
,
定
义
d
(
x
,
y
)
=
(
∑
k
=
1
n
(
ξ
k
−
η
k
)
2
)
1
2
,
(
1.1.1
)
例1.1.2 在n维实向量空间R^n中,定义 d(x, y) = (\sum \limits_{k=1}^{n}(\xi_k - \eta_k)^2)^{\frac{1}{2}}, \quad (1.1.1)
例1.1.2在n维实向量空间Rn中,定义d(x,y)=(k=1∑n(ξk−ηk)2)21,(1.1.1)
其
中
x
=
(
ξ
1
,
⋯
,
ξ
n
)
,
y
=
(
η
1
,
⋯
,
η
n
)
.
则
(
R
n
,
d
)
是
一
个
距
离
空
间
.
其中x = (\xi_1, \cdots, \xi_n), y = (\eta_1, \cdots, \eta_n).则(R^n, d)是一个距离空间.
其中x=(ξ1,⋯,ξn),y=(η1,⋯,ηn).则(Rn,d)是一个距离空间.
分
析
:
要
证
明
(
R
n
,
d
)
是
一
个
距
离
空
间
,
根
据
距
离
空
间
的
定
义
,
即
要
证
明
在
R
n
中
定
义
的
距
离
(
1.1.1
)
式
满
足
“
定
义
1.1.1
”
中
的
条
件
(
1
)
−
(
4
)
.
分析:要证明(R^n, d)是一个距离空间,根据距离空间的定义,即要证明在R^n\\\\ 中定义的距离(1.1.1)式满足“定义1.1.1”中的条件(1)-(4).
分析:要证明(Rn,d)是一个距离空间,根据距离空间的定义,即要证明在Rn中定义的距离(1.1.1)式满足“定义1.1.1”中的条件(1)−(4).
前
三
条
(
非
负
、
正
定
、
对
称
)
显
然
成
立
。
只
需
证
明
(
4
)
(
三
角
不
等
式
)
成
立
,
证
明
主
要
利
用
C
a
u
c
h
y
不
等
式
.
前三条(非负、正定、对称)显然成立。只需证明(4)(三角不等式)成立,\\\\ 证明主要利用Cauchy不等式.
前三条(非负、正定、对称)显然成立。只需证明(4)(三角不等式)成立,证明主要利用Cauchy不等式.
证
明
:
(
1
)
−
(
3
)
显
然
成
立
,
下
面
验
证
(
4
)
成
立
.
由
C
a
u
c
h
y
不
等
式
∑
k
=
1
n
a
k
b
k
≤
(
∑
k
=
1
n
a
k
2
)
1
2
(
∑
k
=
1
n
b
k
2
)
1
2
,
可
推
出
:
(
∑
k
=
1
n
(
a
k
+
b
k
)
2
)
1
2
≤
(
∑
k
=
1
n
a
k
2
)
1
2
+
(
∑
k
=
1
n
b
k
2
)
1
2
(
1.1.2
)
证明:(1)-(3)显然成立,下面验证(4)成立.\\\\ 由Cauchy不等式 \sum \limits_{k=1}^{n} a_k b_k \leq (\sum \limits_{k=1}^{n} a_k^2)^{\frac{1}{2}} (\sum \limits_{k=1}^{n} b_k^2)^{\frac{1}{2}},\\\\ 可推出: (\sum \limits_{k=1}^{n}(a_k + b_k)^2)^{\frac{1}{2}} \leq (\sum \limits_{k=1}^{n} a_k^2)^{\frac{1}{2}} + (\sum \limits_{k=1}^{n} b_k^2)^{\frac{1}{2}} \quad (1.1.2)
证明:(1)−(3)显然成立,下面验证(4)成立.由Cauchy不等式k=1∑nakbk≤(k=1∑nak2)21(k=1∑nbk2)21,可推出:(k=1∑n(ak+bk)2)21≤(k=1∑nak2)21+(k=1∑nbk2)21(1.1.2)
事
实
上
,
事实上,
事实上,
∑
k
=
1
n
(
a
k
+
b
k
)
2
=
∑
k
=
1
n
a
k
2
+
2
∑
k
=
1
n
a
k
b
k
+
∑
k
=
1
n
b
k
2
\sum \limits_{k=1}^{n}(a_k + b_k)^2 = \sum \limits_{k=1}^{n} a_k^2 + 2 \sum \limits_{k=1}^{n} a_k b_k + \sum \limits_{k=1}^{n} b_k^2
k=1∑n(ak+bk)2=k=1∑nak2+2k=1∑nakbk+k=1∑nbk2
≤
∑
k
=
1
n
a
k
2
+
2
[
(
∑
k
=
1
n
a
k
2
)
(
∑
k
=
1
n
b
k
2
)
]
1
2
+
∑
k
=
1
n
b
k
2
\leq \sum \limits_{k=1}^{n} a_k^2 + 2 [(\sum \limits_{k=1}^{n} a_k^2)(\sum \limits_{k=1}^{n} b_k^2)]^{\frac{1}{2}} + \sum \limits_{k=1}^{n} b_k^2
≤k=1∑nak2+2[(k=1∑nak2)(k=1∑nbk2)]21+k=1∑nbk2
=
[
(
∑
k
=
1
n
a
k
2
)
1
2
+
(
∑
k
=
1
n
b
k
2
)
1
2
]
2
=[(\sum \limits_{k=1}^{n} a_k^2)^{\frac{1}{2}} + (\sum \limits_{k=1}^{n} b_k^2)^{\frac{1}{2}}]^2
=[(k=1∑nak2)21+(k=1∑nbk2)21]2
设
x
=
(
ξ
1
,
⋯
,
ξ
n
)
,
y
=
(
η
1
,
⋯
,
η
n
)
,
z
=
(
ζ
1
,
⋯
,
ζ
n
)
是
R
n
中
的
任
意
三
点
.
设x = (\xi_1, \cdots, \xi_n), y = (\eta_1, \cdots, \eta_n), z = (\zeta_1, \cdots, \zeta_n)是R^n中的任意三点.
设x=(ξ1,⋯,ξn),y=(η1,⋯,ηn),z=(ζ1,⋯,ζn)是Rn中的任意三点.
在
不
等
式
(
1.1.2
)
(
∑
k
=
1
n
(
a
k
+
b
k
)
2
)
1
2
≤
(
∑
k
=
1
n
a
k
2
)
1
2
+
(
∑
k
=
1
n
b
k
2
)
1
2
中
,
在不等式(1.1.2) (\sum \limits_{k=1}^{n}(a_k + b_k)^2)^{\frac{1}{2}} \leq (\sum \limits_{k=1}^{n} a_k^2)^{\frac{1}{2}} + (\sum \limits_{k=1}^{n} b_k^2)^{\frac{1}{2}}中,
在不等式(1.1.2)(k=1∑n(ak+bk)2)21≤(k=1∑nak2)21+(k=1∑nbk2)21中,
令
a
k
=
(
ξ
k
−
ζ
k
)
,
b
k
=
(
ζ
k
−
η
k
)
,
则
令a_k = (\xi_k - \zeta_k), b_k = (\zeta_k - \eta_k), 则
令ak=(ξk−ζk),bk=(ζk−ηk),则
[
∑
k
=
1
n
(
ξ
k
−
η
k
)
2
]
1
2
≤
[
∑
k
=
1
n
(
ξ
k
−
ζ
k
)
2
]
1
2
+
[
∑
k
=
1
n
(
ζ
k
−
η
k
)
2
]
1
2
[\sum \limits_{k=1}^{n}(\xi_k - \eta_k)^2]^{\frac{1}{2}} \leq [\sum \limits_{k=1}^{n}(\xi_k - \zeta_k)^2]^{\frac{1}{2}} + [\sum \limits_{k=1}^{n}(\zeta_k - \eta_k)^2]^{\frac{1}{2}}
[k=1∑n(ξk−ηk)2]21≤[k=1∑n(ξk−ζk)2]21+[k=1∑n(ζk−ηk)2]21
即
d
(
x
,
y
)
≤
d
(
x
,
z
)
+
d
(
z
,
y
)
即 d(x, y) \leq d(x, z) + d(z, y)
即d(x,y)≤d(x,z)+d(z,y)
所
以
(
R
n
,
d
)
是
一
个
距
离
空
间
,
简
记
为
R
n
.
所以(R^n, d)是一个距离空间,简记为R^n.
所以(Rn,d)是一个距离空间,简记为Rn.
注
1
:
在
n
维
复
向
量
空
间
C
n
中
,
可
类
似
地
定
义
距
离
注1:在n维复向量空间 C^n 中,可类似地定义距离
注1:在n维复向量空间Cn中,可类似地定义距离
d
(
x
,
y
)
=
(
∑
k
=
1
n
∣
ξ
k
−
η
k
∣
2
)
1
2
\qquad d(x, y) = (\sum \limits_{k=1}^{n} |\xi_k - \eta_k|^2)^{\frac{1}{2}}
d(x,y)=(k=1∑n∣ξk−ηk∣2)21
注
2
:
在
一
个
集
合
上
可
以
定
义
不
同
的
距
离
,
从
而
得
到
不
同
的
距
离
空
间
.
注2:在一个集合上可以定义不同的距离,从而得到不同的距离空间.
注2:在一个集合上可以定义不同的距离,从而得到不同的距离空间.
例
1.1.3
在
R
n
中
,
可
分
别
定
义
例1.1.3 在R^n中,可分别定义
例1.1.3在Rn中,可分别定义
d
1
(
x
,
y
)
=
∑
k
=
1
n
∣
ξ
k
−
η
k
∣
,
(
1.1.3
)
\qquad d_1(x, y) = \sum \limits_{k=1}^{n} | \xi_k - \eta_k |, \quad (1.1.3)
d1(x,y)=k=1∑n∣ξk−ηk∣,(1.1.3)
d
∞
(
x
,
y
)
=
max
{
∣
ξ
1
−
η
1
∣
,
⋯
,
∣
ξ
n
−
η
n
∣
}
,
(
1.1.4
)
\qquad d_{\infty}(x, y) = \max \lbrace |\xi_1 - \eta_1 |, \cdots, |\xi_n - \eta_n| \rbrace, \quad (1.1.4)
d∞(x,y)=max{∣ξ1−η1∣,⋯,∣ξn−ηn∣},(1.1.4)
由
实
数
的
三
角
不
等
式
,
容
易
验
证
(
R
n
,
d
1
)
,
(
R
n
,
d
∞
)
都
是
距
离
空
间
.
由实数的三角不等式,容易验证(R^n, d_1), (R^n, d_{\infty})都是距离空间.
由实数的三角不等式,容易验证(Rn,d1),(Rn,d∞)都是距离空间.
例
1.1.4
序
列
空
间
l
∞
.
例1.1.4 序列空间l^{\infty}.
例1.1.4序列空间l∞.
令
l
∞
=
{
x
=
(
ξ
j
)
∣
∣
ξ
j
∣
≤
c
x
}
,
令 l^{\infty} = \lbrace x = (\xi_j) | |\xi_j| \leq c_x \rbrace,
令l∞={x=(ξj)∣∣ξj∣≤cx},
其
中
c
x
与
j
无
关
,
即
l
∞
是
全
体
有
界
的
数
列
.
在
l
∞
中
定
义
其中c_x与j无关,即l^{\infty}是全体有界的数列.在l^{\infty}中定义
其中cx与j无关,即l∞是全体有界的数列.在l∞中定义
d
(
x
,
y
)
=
sup
j
∈
N
{
∣
ξ
j
−
η
j
∣
}
,
(
1.1.5
)
\qquad d(x, y) = \sup \limits_{j \in N} \lbrace |\xi_j - \eta_j | \rbrace, \quad (1.1.5)
d(x,y)=j∈Nsup{∣ξj−ηj∣},(1.1.5)
$其中,x = (\xi_j), y = (\eta_j) \in l^{\infty}并且 N = \lbrace 1, 2, \cdots \rbrace, $
验
证
l
∞
是
一
个
距
离
空
间
验证 l^{\infty}是一个距离空间
验证l∞是一个距离空间
注
意
:
由
于
数
列
是
有
界
的
,
(
1.1.5
)
式
中
的
上
确
界
存
在
.
注意:由于数列是有界的,(1.1.5)式中的上确界存在.
注意:由于数列是有界的,(1.1.5)式中的上确界存在.
注
:
l
∞
可
看
作
是
C
n
由
(
1.1.4
)
式
定
义
的
距
离
d
∞
(
x
,
y
)
产
生
的
注:l^{\infty}可看作是C^n由(1.1.4)式定义的距离d_{\infty}(x, y)产生的
注:l∞可看作是Cn由(1.1.4)式定义的距离d∞(x,y)产生的
距
离
空
间
(
C
n
,
d
∞
)
的
推
广
,
由
于
是
无
穷
序
列
,
max
被
sup
所
代
替
.
距离空间(C^n, d_{\infty})的推广,由于是无穷序列, \max 被 \sup 所代替.
距离空间(Cn,d∞)的推广,由于是无穷序列,max被sup所代替.
例
1.1.5
连
续
函
数
空
间
C
[
a
,
b
]
.
例1.1.5 连续函数空间C[a, b].
例1.1.5连续函数空间C[a,b].
考
虑
闭
区
间
[
a
,
b
]
上
全
体
连
续
函
数
,
定
义
考虑闭区间[a, b]上全体连续函数,定义
考虑闭区间[a,b]上全体连续函数,定义
d
(
x
,
y
)
=
max
a
≤
t
≤
b
∣
x
(
t
)
−
y
(
t
)
∣
,
(
1.1.6
)
\qquad d(x, y) = \max \limits_{a \leq t \leq b} | x(t) - y(t) |, \quad (1.1.6)
d(x,y)=a≤t≤bmax∣x(t)−y(t)∣,(1.1.6)
其
中
x
(
t
)
,
y
(
t
)
是
[
a
,
b
]
上
的
任
意
两
个
连
续
函
数
,
则
C
[
a
,
b
]
是
一
个
距
离
空
间
.
其中x(t), y(t)是[a, b]上的任意两个连续函数,则C[a, b]是一个距离空间.
其中x(t),y(t)是[a,b]上的任意两个连续函数,则C[a,b]是一个距离空间.
分
析
:
要
证
明
在
由
闭
区
间
[
a
,
b
]
上
全
体
连
续
函
数
组
成
的
集
合
上
定
义
的
距
离
(
1.1.6
)
式
满
足
定
义
1.1.1
的
(
1
)
−
(
4
)
.
分析:要证明在由闭区间[a, b]上全体连续函数组成的集合上定义的\\\\ 距离(1.1.6)式满足定义1.1.1的(1)-(4).
分析:要证明在由闭区间[a,b]上全体连续函数组成的集合上定义的距离(1.1.6)式满足定义1.1.1的(1)−(4).
证
明
距
离
定
义
中
的
(
1
)
−
(
3
)
(
非
负
、
正
定
、
对
称
)
显
然
成
立
.
下
面
证
明
(
4
)
成
立
.
证明距离定义中的(1)-(3)(非负、正定、对称)显然成立.下面证明(4)成立.
证明距离定义中的(1)−(3)(非负、正定、对称)显然成立.下面证明(4)成立.
设
x
(
t
)
,
y
(
t
)
,
z
(
t
)
是
[
a
,
b
]
上
任
意
三
个
连
续
函
数
,
设x(t), y(t),z(t)是[a, b]上任意三个连续函数,
设x(t),y(t),z(t)是[a,b]上任意三个连续函数,
要
证
d
(
x
,
y
)
≤
d
(
x
,
z
)
+
d
(
z
,
y
)
,
即
要
证
:
要证 d(x, y) \leq d(x, z) + d(z, y),即要证:
要证d(x,y)≤d(x,z)+d(z,y),即要证:
$\max \limits_{a \leq t \leq b} | x(t) - y(t) | \leq \max \limits_{a \leq t \leq b} | x(t) - z(t) | + \max \limits_{a \leq t \leq b} | z(t) - y(t) | $
由
绝
对
值
三
角
不
等
式
,
对
∀
t
∈
[
a
,
b
]
,
由绝对值三角不等式,对 \forall t \in [a, b],
由绝对值三角不等式,对∀t∈[a,b],
∣
x
(
t
)
−
y
(
t
)
∣
≤
∣
x
(
t
)
−
z
(
t
)
∣
+
∣
z
(
t
)
−
y
(
t
)
∣
|x(t) - y(t)| \leq |x(t) - z(t)| + |z(t) - y(t)|
∣x(t)−y(t)∣≤∣x(t)−z(t)∣+∣z(t)−y(t)∣
≤
max
a
≤
t
≤
b
∣
x
(
t
)
−
z
(
t
)
∣
+
max
a
≤
t
≤
b
∣
z
(
t
)
−
y
(
t
)
∣
\leq \max \limits_{a \leq t \leq b} |x(t) - z(t)| + \max \limits_{a \leq t \leq b} |z(t) - y(t)|
≤a≤t≤bmax∣x(t)−z(t)∣+a≤t≤bmax∣z(t)−y(t)∣
=
d
(
x
,
z
)
+
d
(
z
,
y
)
= d(x, z) + d(z, y)
=d(x,z)+d(z,y)
所
以
d
(
x
,
y
)
=
max
a
≤
t
≤
b
∣
x
(
t
)
−
y
(
t
)
∣
≤
d
(
x
,
z
)
+
d
(
z
,
y
)
所以 d(x, y) = \max \limits_{a \leq t \leq b}|x(t) - y(t)| \leq d(x, z) + d(z, y)
所以d(x,y)=a≤t≤bmax∣x(t)−y(t)∣≤d(x,z)+d(z,y)
于
是
[
a
,
b
]
上
的
全
体
连
续
函
数
赋
以
上
述
距
离
称
为
一
个
距
离
空
间
,
记
为
C
[
a
,
b
]
.
于是[a, b]上的全体连续函数赋以上述距离称为一个距离空间,记为C[a, b].
于是[a,b]上的全体连续函数赋以上述距离称为一个距离空间,记为C[a,b].
例
1.1.6
在
由
闭
区
间
[
a
,
b
]
上
定
义
的
全
体
连
续
函
数
组
成
的
集
合
上
,
还
可
以
定
义
例1.1.6 在由闭区间[a, b] 上定义的全体连续函数组成的集合上,还可以定义
例1.1.6在由闭区间[a,b]上定义的全体连续函数组成的集合上,还可以定义
d
(
x
,
y
)
=
∫
a
b
∣
x
(
t
)
−
y
(
t
)
∣
d
t
(
1.1.7
)
\qquad d(x, y) = \int_a^b |x(t) - y(t)| dt \quad (1.1.7)
d(x,y)=∫ab∣x(t)−y(t)∣dt(1.1.7)
形
成
一
个
新
的
距
离
空
间
.
形成一个新的距离空间.
形成一个新的距离空间.
它
与
C
[
a
,
b
]
空
间
有
很
大
不
同
.
它与C[a, b]空间有很大不同.
它与C[a,b]空间有很大不同.
例
1.1.7
在
由
[
a
,
b
]
区
间
上
全
体
连
续
函
数
组
成
的
集
合
上
,
我
们
还
可
以
定
义
例1.1.7 在由[a, b]区间上全体连续函数组成的集合上,我们还可以定义
例1.1.7在由[a,b]区间上全体连续函数组成的集合上,我们还可以定义
d
(
x
,
y
)
=
{
∫
a
b
∣
x
(
t
)
−
y
(
t
)
∣
2
d
t
}
1
2
(
1.1.8
)
\qquad d(x, y) = \lbrace \int_a^b |x(t) - y(t) |^2 dt \rbrace ^{\frac{1}{2}} \quad (1.1.8)
d(x,y)={∫ab∣x(t)−y(t)∣2dt}21(1.1.8)
可
以
证
明
它
也
是
一
个
距
离
空
间
(
证
明
见
第
二
章
2.2.3
节
)
可以证明它也是一个距离空间(证明见第二章 2.2.3 节)
可以证明它也是一个距离空间(证明见第二章2.2.3节)
在
第
三
章
可
以
看
到
,
它
是
由
内
积
产
生
的
距
离
,
是
一
个
十
分
重
要
的
距
离
.
在第三章可以看到,它是由内积产生的距离,是一个十分重要的距离.
在第三章可以看到,它是由内积产生的距离,是一个十分重要的距离.
注
:
在
一
个
集
合
上
,
可
以
引
进
多
种
距
离
。
要
根
据
研
究
问
题
的
不
同
,
定
义
不
同
的
距
离
.
注:在一个集合上,可以引进多种距离。要根据研究问题的不同,定义不同的距离.
注:在一个集合上,可以引进多种距离。要根据研究问题的不同,定义不同的距离.
以
后
我
们
可
以
看
到
,
有
的
距
离
下
空
间
完
备
;
有
的
距
离
下
空
间
不
完
备
.
以后我们可以看到,有的距离下空间完备;有的距离下空间不完备.
以后我们可以看到,有的距离下空间完备;有的距离下空间不完备.
空
间
的
完
备
性
是
很
重
要
的
,
有
了
完
备
性
,
极
限
运
算
(
微
分
和
积
分
)
才
能
很
好
的
进
行
.
空间的完备性是很重要的,有了完备性,极限运算(微分和积分)才能很好的进行.
空间的完备性是很重要的,有了完备性,极限运算(微分和积分)才能很好的进行.
不
同
的
距
离
导
出
的
收
敛
性
不
同
.
不同的距离导出的收敛性不同.
不同的距离导出的收敛性不同.
距
离
空
间
中
距
离
的
选
择
是
十
分
重
要
的
.
距离空间中距离的选择是十分重要的.
距离空间中距离的选择是十分重要的.
具
体
定
义
什
么
样
的
距
离
,
要
根
据
不
同
的
问
题
,
设
定
不
同
的
目
标
,
引
进
不
同
的
距
离
.
具体定义什么样的距离,要根据不同的问题,设定不同的目标,引进不同的距离.
具体定义什么样的距离,要根据不同的问题,设定不同的目标,引进不同的距离.
例
1.1.8
设
B
为
全
体
由
整
数
组
成
的
元
素
序
列
,
例1.1.8 设B为全体由整数组成的元素序列,
例1.1.8设B为全体由整数组成的元素序列,
即
B
=
{
n
=
(
n
1
,
n
2
,
⋯
)
∣
n
i
∈
N
}
,
定
义
即 B = \lbrace n = (n_1, n_2, \cdots) | n_i \in N \rbrace, 定义
即B={n=(n1,n2,⋯)∣ni∈N},定义
d
(
n
,
m
)
=
{
0
,
如
果
n
i
=
m
i
,
i
=
1
,
2
,
⋯
,
1
k
,
k
是
n
i
≠
m
i
头
一
个
指
标
,
\qquad d(n, m) = \left \lbrace \begin{array}{l} 0, 如果n_i = m_i, i = 1, 2, \cdots, \\ \dfrac{1}{k}, k 是n_i \neq m_i头一个指标, \end{array} \right.
d(n,m)={0,如果ni=mi,i=1,2,⋯,k1,k是ni=mi头一个指标,
其
中
m
=
(
m
1
,
m
2
,
⋯
)
.
可
以
验
证
(
B
,
d
)
是
一
个
距
离
空
间
,
其中m = (m_1, m_2, \cdots).可以验证(B, d)是一个距离空间,
其中m=(m1,m2,⋯).可以验证(B,d)是一个距离空间,
且
这
个
距
离
满
足
“
更
强
”
的
三
角
不
等
式
,
即
对
于
∀
n
,
m
,
h
∈
B
,
有
且这个距离满足“更强”的三角不等式,即对于 \forall n, m, h \in B, 有
且这个距离满足“更强”的三角不等式,即对于∀n,m,h∈B,有
d
(
n
,
m
)
≤
max
{
d
(
n
,
h
)
,
d
(
h
,
m
)
}
(
1.1.9
)
\qquad d(n, m) \leq \max \lbrace d(n,h), d(h, m) \rbrace \quad (1.1.9)
d(n,m)≤max{d(n,h),d(h,m)}(1.1.9)
事
实
上
,
只
要
注
意
到
n
,
h
和
h
,
m
头
一
个
不
相
等
项
的
指
标
一
定
小
于
或
者
等
于
n
,
m
头
一
个
不
相
等
项
的
指
标
,
则
有
(
1.1.9
)
式
成
立
.
事实上,只要注意到n, h 和 h, m 头一个不相等项的指标一定小于或者\\\\ 等于n, m 头一个不相等项的指标,则有(1.1.9)式成立.
事实上,只要注意到n,h和h,m头一个不相等项的指标一定小于或者等于n,m头一个不相等项的指标,则有(1.1.9)式成立.
这
一
距
离
,
是
从
下
述
数
学
模
型
中
抽
象
出
来
的
.
这一距离,是从下述数学模型中抽象出来的.
这一距离,是从下述数学模型中抽象出来的.
假
设
s
(
t
)
是
一
个
通
过
某
一
通
讯
系
统
送
出
的
信
号
,
且
s
(
t
)
:
假设s(t)是一个通过某一通讯系统送出的信号,且s(t):
假设s(t)是一个通过某一通讯系统送出的信号,且s(t):
①
每
秒
取
样
一
次
,
②
在
单
位
时
间
看
作
常
量
,
③
信
号
码
都
编
译
成
整
数
.
①每秒取样一次,②在单位时间看作常量,③信号码都编译成整数.
①每秒取样一次,②在单位时间看作常量,③信号码都编译成整数.
如
图
1.1.2
所
示
:
如图1.1.2所示:
如图1.1.2所示:
在
图
1.1.2
中
表
示
整
数
的
信
号
是
n
s
=
{
0
,
1
,
3
,
5
,
6
,
7
,
7
,
8
,
8
,
7
,
⋯
}
.
在图1.1.2中表示整数的信号是 n_s = \lbrace 0, 1, 3, 5, 6, 7, 7, 8, 8, 7, \cdots \rbrace.
在图1.1.2中表示整数的信号是ns={0,1,3,5,6,7,7,8,8,7,⋯}.
由
于
系
统
和
环
境
的
扰
动
,
收
到
的
信
号
可
能
会
发
生
误
差
.
假
设
收
到
的
信
号
是
由于系统和环境的扰动,收到的信号可能会发生误差.假设收到的信号是
由于系统和环境的扰动,收到的信号可能会发生误差.假设收到的信号是
$\qquad n_r = \lbrace n_{r_1}, n_{r_2}, \cdots \rbrace, $
则
我
们
可
以
通
过
送
出
和
收
到
的
信
号
的
距
离
d
(
n
s
,
n
r
)
来
刻
画
多
长
时
间
某
一
个
误
差
发
生
,
则我们可以通过送出和收到的信号的距离 d(n_s, n_r) 来刻画多长时间某一个误差发生,
则我们可以通过送出和收到的信号的距离d(ns,nr)来刻画多长时间某一个误差发生,
即
d
(
n
s
,
n
r
)
越
小
,
则
通
信
系
统
不
发
生
误
差
运
行
的
时
间
越
长
.
即d(n_s, n_r)越小,则通信系统不发生误差运行的时间越长.
即d(ns,nr)越小,则通信系统不发生误差运行的时间越长.
例
1.1.9
X
是
一
个
非
空
集
合
,
x
,
y
∈
X
,
定
义
例1.1.9 X是一个非空集合, x, y \in X, 定义
例1.1.9X是一个非空集合,x,y∈X,定义
d
(
x
,
y
)
=
{
1
,
x
≠
y
,
0
,
x
=
y
(
1.1.10
)
\qquad d(x, y) = \left \lbrace \begin{array}{l}1, x \neq y, \\ 0, x = y \end{array} \right. \quad (1.1.10)
d(x,y)={1,x=y,0,x=y(1.1.10)
容
易
验
证
d
是
一
个
距
离
,
(
X
,
d
)
是
一
个
距
离
空
间
,
称
为
离
散
的
距
离
空
间
,
记
为
D
.
容易验证d是一个距离, (X, d)是一个距离空间,称为离散的距离空间,记为D.
容易验证d是一个距离,(X,d)是一个距离空间,称为离散的距离空间,记为D.
注
:
许
多
距
离
空
间
是
在
线
性
空
间
上
定
义
的
.
注:许多距离空间是在线性空间上定义的.
注:许多距离空间是在线性空间上定义的.
在
线
性
空
间
X
中
,
加
法
,
数
乘
运
算
是
封
闭
的
.
在线性空间X中,加法,数乘运算是封闭的.
在线性空间X中,加法,数乘运算是封闭的.
例
如
R
n
,
C
[
a
,
b
]
,
s
都
是
线
性
空
间
.
例如R^n, C[a, b], s 都是线性空间.
例如Rn,C[a,b],s都是线性空间.
但
例
1.1.9
中
定
义
的
离
散
距
离
D
不
一
定
是
线
性
空
间
.
但例1.1.9中定义的离散距离D不一定是线性空间.
但例1.1.9中定义的离散距离D不一定是线性空间.
1.1.3 距 离 空 间 中 的 收 敛 \color{blue}{1.1.3 距离空间中的收敛} 1.1.3距离空间中的收敛
在
空
间
中
定
义
了
距
离
后
,
我
们
就
可
以
在
距
离
空
间
中
引
入
极
限
的
概
念
.
在空间中定义了距离后,我们就可以在距离空间中引入极限的概念.
在空间中定义了距离后,我们就可以在距离空间中引入极限的概念.
这
是
我
们
的
重
要
目
的
之
一
.
这是我们的重要目的之一.
这是我们的重要目的之一.
$定义1.1.10 设(X, d)是一个距离空间, \lbrace x_n \rbrace \subset X, x_0 \in X, $
如
果
当
n
→
∞
时
,
d
(
x
n
,
x
0
)
→
0
,
则
称
{
x
n
}
以
x
0
为
极
限
,
如果当 n \to \infty 时, d(x_n, x_0) \to 0, 则称 \lbrace x_n \rbrace 以 x_0 为极限,
如果当n→∞时,d(xn,x0)→0,则称{xn}以x0为极限,
或
说
{
x
n
}
收
敛
到
x
0
,
记
为
或说 \lbrace x_n \rbrace 收敛到x_0, 记为
或说{xn}收敛到x0,记为
x
n
→
x
0
(
n
→
∞
)
,
或
者
lim
n
→
∞
x
n
=
x
0
\qquad x_n \to x_0 (n \to \infty), 或者 \lim \limits_{n \to \infty} x_n = x_0
xn→x0(n→∞),或者n→∞limxn=x0
注
1
:
x
0
必
须
属
于
(
X
,
d
)
.
注1: x_0 必须属于 (X, d).
注1:x0必须属于(X,d).
注
2
:
X
是
距
离
空
间
,
其
中
d
(
x
n
,
x
0
)
→
0
(
n
→
∞
)
是
数
列
趋
近
于
零
.
注2: X是距离空间,其中d(x_n, x_0) \to 0 (n \to \infty) 是数列趋近于零.
注2:X是距离空间,其中d(xn,x0)→0(n→∞)是数列趋近于零.
注
3
:
对
于
lim
n
→
∞
x
n
=
x
0
,
用
ε
−
N
语
言
表
述
为
:
注3: 对于\lim \limits_{n \to \infty} x_n = x_0, 用 \varepsilon - N 语言表述为:
注3:对于n→∞limxn=x0,用ε−N语言表述为:
∀
ε
>
0
,
∃
N
,
当
n
≥
N
时
,
有
d
(
x
n
,
x
0
)
<
ε
\qquad \forall \varepsilon > 0, \exists N, 当 n \geq N时, 有 d(x_n, x_0) < \varepsilon
∀ε>0,∃N,当n≥N时,有d(xn,x0)<ε
距离空间中收敛点列的性质:
定
理
1.1.11
{
x
n
}
在
X
中
收
敛
,
则
定理1.1.11 \lbrace x_n \rbrace 在X中收敛,则
定理1.1.11{xn}在X中收敛,则
(
i
)
{
x
n
}
的
极
限
是
唯
一
的
.
(i) \lbrace x_n \rbrace 的极限是唯一的.
(i){xn}的极限是唯一的.
(
i
i
)
若
x
0
是
{
x
n
}
的
极
限
,
则
它
的
任
何
子
列
也
收
敛
到
x
0
.
(ii) 若x_0是\lbrace x_n \rbrace 的极限, 则它的任何子列也收敛到x_0.
(ii)若x0是{xn}的极限,则它的任何子列也收敛到x0.
分
析
:
利
用
距
离
空
间
中
数
列
极
限
的
定
义
来
证
明
.
分析:利用距离空间中数列极限的定义来证明.
分析:利用距离空间中数列极限的定义来证明.
证
明
(
i
)
反
之
法
.
假
设
同
时
有
x
0
,
y
0
∈
X
,
x
0
≠
y
0
,
且
证明(i) 反之法.假设同时有 x_0, y_0 \in X, x_0 \neq y_0, 且
证明(i)反之法.假设同时有x0,y0∈X,x0=y0,且
x
n
→
x
0
,
x
n
→
y
0
(
n
→
∞
)
.
x_n \to x_0, x_n \to y_0 (n \to \infty).
xn→x0,xn→y0(n→∞).
根
据
收
敛
数
列
的
ε
−
N
语
言
,
我
们
有
:
根据收敛数列的\varepsilon - N 语言,我们有:
根据收敛数列的ε−N语言,我们有:
对
于
ε
0
=
1
2
d
(
x
0
,
y
0
)
>
0
,
存
在
N
1
,
当
n
≥
N
1
时
,
d
(
x
0
,
x
n
)
<
ε
0
对于\varepsilon_0 = \dfrac{1}{2} d(x_0, y_0) > 0, 存在N_1, 当 n \geq N_1时, d(x_0, x_n) < \varepsilon_0
对于ε0=21d(x0,y0)>0,存在N1,当n≥N1时,d(x0,xn)<ε0
同
时
存
在
N
2
,
当
n
≥
N
2
时
,
d
(
y
0
,
x
n
)
<
ε
0
同时存在N_2, 当n \geq N_2时, d(y_0, x_n) < \varepsilon_0
同时存在N2,当n≥N2时,d(y0,xn)<ε0
于
是
当
n
≥
max
{
N
1
,
N
2
}
时
,
于是当n \geq \max \lbrace N_1, N_2 \rbrace 时,
于是当n≥max{N1,N2}时,
d
(
x
0
,
y
0
)
≤
d
(
x
0
,
x
n
)
+
d
(
x
n
,
y
0
)
<
2
ε
=
d
(
x
0
,
y
0
)
,
\qquad d(x_0, y_0) \leq d(x_0, x_n) +d(x_n, y_0) < 2 \varepsilon = d(x_0, y_0),
d(x0,y0)≤d(x0,xn)+d(xn,y0)<2ε=d(x0,y0),
这
是
不
可
能
的
,
因
此
极
限
唯
一
.
这是不可能的,因此极限唯一.
这是不可能的,因此极限唯一.
(
i
i
)
与
数
学
分
析
中
(
通
常
实
数
域
距
离
空
间
中
)
收
敛
数
列
类
似
性
质
的
证
明
方
法
一
样
.
(ii) 与数学分析中(通常实数域距离空间中)收敛数列类似性质的证明方法一样.
(ii)与数学分析中(通常实数域距离空间中)收敛数列类似性质的证明方法一样.
$由已知 x_n \to x_0 (n \to \infty), 根据定义有: $
∀
ε
>
0
,
∃
N
,
当
n
≥
N
时
,
d
(
x
n
,
x
0
)
<
ε
\forall \varepsilon > 0, \exists N, 当 n \geq N时, d(x_n, x_0) < \varepsilon
∀ε>0,∃N,当n≥N时,d(xn,x0)<ε
设
{
x
n
k
}
是
{
x
n
}
的
子
列
(
要
证
x
n
k
→
x
0
(
k
→
∞
)
)
,
设\lbrace x_{n_k} \rbrace 是 \lbrace x_n \rbrace 的子列(要证x_{n_k} \to x_0 (k \to \infty)),
设{xnk}是{xn}的子列(要证xnk→x0(k→∞)),
由
n
k
≥
k
,
n
k
→
∞
,
(
k
→
∞
)
由 n_k \geq k, n_k \to \infty, (k \to \infty)
由nk≥k,nk→∞,(k→∞)
取
K
=
N
,
当
k
>
N
时
,
n
k
≥
k
>
K
=
N
,
于
是
d
(
x
n
k
,
x
0
)
<
ε
,
取 K = N, 当k > N时, n_k \geq k > K = N, 于是 d(x_{n_k}, x_0) < \varepsilon,
取K=N,当k>N时,nk≥k>K=N,于是d(xnk,x0)<ε,
即
lim
k
→
∞
x
n
k
=
x
0
即 \lim \limits_{k \to \infty} x_{n_k} = x_0
即k→∞limxnk=x0
定
义
1.1.12
d
(
x
,
y
)
是
关
于
x
和
y
的
二
元
连
续
函
数
.
定义1.1.12 d(x, y) 是关于x和y的二元连续函数.
定义1.1.12d(x,y)是关于x和y的二元连续函数.
即
当
x
n
→
x
,
y
n
→
y
(
n
→
∞
)
时
,
即当x_n \to x, y_n \to y(n \to \infty)时,
即当xn→x,yn→y(n→∞)时,
d
(
x
n
,
y
n
)
→
d
(
x
,
y
)
(
n
→
∞
)
\qquad d(x_n, y_n) \to d(x, y)(n \to \infty)
d(xn,yn)→d(x,y)(n→∞)
分
析
:
在
距
离
空
间
(
X
,
d
)
中
对
于
任
何
两
点
x
,
y
都
有
唯
一
确
定
的
实
数
d
(
x
,
y
)
与
之
对
应
,
这
说
明
d
(
x
,
y
)
是
一
个
二
元
实
函
数
.
分析:在距离空间(X, d) 中对于任何两点x, y 都有唯一确定的实数 d(x, y) \\\\ 与之对应, 这说明 d(x, y)是一个二元实函数.
分析:在距离空间(X,d)中对于任何两点x,y都有唯一确定的实数d(x,y)与之对应,这说明d(x,y)是一个二元实函数.
在
实
数
空
间
中
,
距
离
是
通
常
的
绝
对
值
距
离
,
定
理
要
证
:
在实数空间中,距离是通常的绝对值距离,定理要证:
在实数空间中,距离是通常的绝对值距离,定理要证:
在
条
件
x
n
→
x
,
y
n
→
y
(
n
→
∞
)
下
,
有
在条件x_n \to x, y_n \to y (n \to \infty)下,有
在条件xn→x,yn→y(n→∞)下,有
∣
d
(
x
n
,
y
n
)
−
d
(
x
,
y
)
∣
→
0
(
n
→
∞
)
\qquad |d(x_n, y_n) - d(x, y) | \to 0 (n \to \infty)
∣d(xn,yn)−d(x,y)∣→0(n→∞)
证
明
:
由
距
离
的
三
角
不
等
式
有
:
证明:由距离的三角不等式有:
证明:由距离的三角不等式有:
$d(x_n, y_n) \leq d(x_n, x) + d(x, y) + d(y, y_n), $
$即: d(x_n, y_n) - d(x, y) \leq d(x_n, x) + d(y_n, y), $
$同理有: d(x, y) - d(x_n, y_n) \leq d(x_n, x) + d(y_n, y), $
于
是
有
:
于是有:
于是有:
∣
d
(
x
n
,
y
n
)
−
d
(
x
,
y
)
∣
≤
d
(
x
n
,
x
)
+
d
(
y
n
,
y
)
→
(
n
→
∞
)
.
|d(x_n, y_n) - d(x, y)| \leq d(x_n, x) + d(y_n, y) \to (n \to \infty).
∣d(xn,yn)−d(x,y)∣≤d(xn,x)+d(yn,y)→(n→∞).
距
离
空
间
中
收
敛
的
“
含
义
”
距离空间中收敛的“含义”
距离空间中收敛的“含义”
下
面
在
一
些
距
离
空
间
中
,
我
们
研
究
收
敛
的
“
具
体
含
义
”
.
下面在一些距离空间中,我们研究收敛的“具体含义”.
下面在一些距离空间中,我们研究收敛的“具体含义”.
例
1.1.13
R
m
空
间
,
设
x
n
=
(
ξ
1
(
n
)
,
ξ
2
(
n
)
,
⋯
,
ξ
m
(
n
)
)
(
n
=
1
,
2
,
⋯
)
,
例1.1.13 R^m 空间,设 x_n = (\xi_1^{(n)}, \xi_2^{(n)}, \cdots, \xi_m^{(n)}) (n = 1, 2, \cdots),
例1.1.13Rm空间,设xn=(ξ1(n),ξ2(n),⋯,ξm(n))(n=1,2,⋯),
x
=
(
ξ
1
,
ξ
2
,
⋯
,
ξ
m
)
∈
R
m
,
则
d
(
x
n
,
x
)
→
0
,
等
价
于
\qquad x = (\xi_1, \xi_2, \cdots, \xi_m) \in R^m, 则 d(x_n, x) \to 0, 等价于
x=(ξ1,ξ2,⋯,ξm)∈Rm,则d(xn,x)→0,等价于
ξ
i
(
n
)
→
ξ
i
(
n
→
∞
)
,
i
=
1
,
2
,
⋯
,
m
.
(
1.1.11
)
\qquad \xi_i^{(n)} \to \xi_i(n \to \infty), i = 1, 2, \cdots, m. \quad (1.1.11)
ξi(n)→ξi(n→∞),i=1,2,⋯,m.(1.1.11)
在
R
m
空
间
中
,
点
列
的
收
敛
,
等
价
于
按
坐
标
收
敛
.
在R^{m}空间中,点列的收敛,等价于按坐标收敛.
在Rm空间中,点列的收敛,等价于按坐标收敛.
证
明
:
d
(
x
n
,
x
)
→
0
,
即
(
ξ
1
(
n
)
−
ξ
1
)
2
+
⋯
+
(
ξ
n
(
n
)
−
ξ
m
)
2
→
0.
(
n
→
∞
)
证明: d(x_n, x) \to 0, 即\sqrt{(\xi_1^{(n)} - \xi_1)^2 + \cdots + (\xi_n^{(n)} - \xi_m)^2} \to 0. (n \to \infty)
证明:d(xn,x)→0,即(ξ1(n)−ξ1)2+⋯+(ξn(n)−ξm)2→0.(n→∞)
∣
ξ
i
(
n
)
−
ξ
i
∣
≤
(
∑
k
=
1
m
∣
ξ
k
(
n
)
−
ξ
k
∣
2
)
1
2
=
d
(
x
n
,
x
)
,
i
=
1
,
2
,
⋯
,
m
|\xi_i^{(n)} - \xi_i| \leq (\sum \limits_{k=1}^{m}|\xi_k^{(n)} - \xi_k|^2)^{\frac{1}{2}} = d(x_n, x), i = 1, 2, \cdots, m
∣ξi(n)−ξi∣≤(k=1∑m∣ξk(n)−ξk∣2)21=d(xn,x),i=1,2,⋯,m
d
(
x
n
,
x
)
=
(
∑
k
−
1
m
∣
ξ
k
(
n
)
−
ξ
k
∣
2
)
1
2
≤
∣
ξ
1
(
n
)
−
ξ
1
∣
+
⋯
+
∣
ξ
m
(
n
)
−
ξ
m
∣
d(x_n, x) = (\sum \limits_{k-1}^{m} |\xi_k^{(n)} - \xi_k|^2)^{\frac{1}{2}} \leq |\xi_1^{(n)} - \xi_1| + \cdots + |\xi_m^{(n)} - \xi_m|
d(xn,x)=(k−1∑m∣ξk(n)−ξk∣2)21≤∣ξ1(n)−ξ1∣+⋯+∣ξm(n)−ξm∣
即
可
得
到
结
论
(
空
间
中
点
列
的
收
敛
,
等
价
于
按
坐
标
收
敛
)
.
即可得到结论(空间中点列的收敛,等价于按坐标收敛).
即可得到结论(空间中点列的收敛,等价于按坐标收敛).
例
1.1.14
C
[
a
,
b
]
空
间
.
例1.1.14 C[a, b]空间.
例1.1.14C[a,b]空间.
C
[
a
,
b
]
中
的
收
敛
性
是
函
数
列
在
[
a
,
b
]
上
的
一
致
收
敛
.
C[a, b]中的收敛性是函数列在[a, b]上的一致收敛.
C[a,b]中的收敛性是函数列在[a,b]上的一致收敛.
设
x
n
(
t
)
(
n
=
1
,
2
,
⋯
)
,
x
(
t
)
∈
C
[
a
,
b
]
,
且
d
(
x
n
,
x
)
→
0
,
即
设x_n(t) (n=1, 2, \cdots), x(t) \in C[a, b],且d(x_n, x) \to 0, 即
设xn(t)(n=1,2,⋯),x(t)∈C[a,b],且d(xn,x)→0,即
max
a
≤
t
≤
b
∣
x
n
(
t
)
−
x
(
t
)
∣
→
0
(
n
→
∞
)
.
\qquad \max \limits_{a \leq t \leq b}|x_n(t) - x(t) | \to 0 (n \to \infty).
a≤t≤bmax∣xn(t)−x(t)∣→0(n→∞).
于
是
对
∀
ε
≥
0
,
∃
N
,
当
n
≥
N
时
,
对
∀
t
∈
[
a
,
b
]
,
有
于是对 \forall \varepsilon \geq 0, \exists N, 当n \geq N时,对 \forall t \in [a, b], 有
于是对∀ε≥0,∃N,当n≥N时,对∀t∈[a,b],有
∣
x
n
(
t
)
−
x
(
t
)
∣
≤
max
a
≤
t
≤
b
∣
x
n
(
t
)
−
x
(
t
)
∣
<
ε
,
\qquad |x_n(t) - x(t) | \leq \max \limits_{a \leq t \leq b} | x_n(t) - x(t) | < \varepsilon,
∣xn(t)−x(t)∣≤a≤t≤bmax∣xn(t)−x(t)∣<ε,
即
:
x
n
(
t
)
一
致
收
敛
到
x
(
t
)
.
即: x_n(t) 一致收敛到 x(t).
即:xn(t)一致收敛到x(t).
反
之
,
x
n
(
t
)
一
致
收
敛
到
x
(
t
)
可
以
推
出
d
(
x
n
,
x
)
→
0.
反之,x_n(t)一致收敛到x(t)可以推出d(x_n, x) \to 0.
反之,xn(t)一致收敛到x(t)可以推出d(xn,x)→0.
事
实
上
,
x
n
(
t
)
一
致
收
敛
到
x
(
t
)
,
即
:
事实上,x_n(t)一致收敛到x(t),即:
事实上,xn(t)一致收敛到x(t),即:
对
∀
ε
≥
0
,
∃
N
,
当
n
≥
N
时
,
对
∀
t
∈
[
a
,
b
]
,
有
对\forall \varepsilon \geq 0, \exists N, 当n \geq N时, 对\forall t \in [a, b], 有
对∀ε≥0,∃N,当n≥N时,对∀t∈[a,b],有
$\qquad | x_n(t) - x(t) | < \varepsilon, $
上
式
两
边
对
t
∈
[
a
,
b
]
取
最
大
值
,
则
上式两边对t \in [a, b]取最大值, 则
上式两边对t∈[a,b]取最大值,则
max
a
≤
t
≤
b
∣
x
n
(
t
)
−
x
(
t
)
∣
≤
ε
\qquad \max \limits_{a \leq t \leq b} |x_n(t) - x(t) | \leq \varepsilon
a≤t≤bmax∣xn(t)−x(t)∣≤ε
说
明
x
n
→
x
(
n
→
∞
)
说明 x_n \to x (n \to \infty)
说明xn→x(n→∞)
即
C
[
a
,
b
]
中
的
收
敛
是
函
数
列
在
[
a
,
b
]
上
的
一
致
收
敛
.
即C[a, b]中的收敛是函数列在[a, b]上的一致收敛.
即C[a,b]中的收敛是函数列在[a,b]上的一致收敛.
例
1.1.15
设
X
表
示
由
[
0
,
1
]
区
间
上
全
体
连
续
函
数
组
成
的
集
合
,
定
义
例1.1.15 设X表示由[0, 1]区间上全体连续函数组成的集合,定义
例1.1.15设X表示由[0,1]区间上全体连续函数组成的集合,定义
d
2
(
x
,
y
)
=
{
∫
0
1
∣
x
(
t
)
−
y
(
t
)
∣
2
d
t
}
1
2
(
1.1.12
)
d_2(x, y) = \lbrace \int_0^1 |x(t) - y(t)| ^2 dt \rbrace ^{\frac{1}{2}} \quad (1.1.12)
d2(x,y)={∫01∣x(t)−y(t)∣2dt}21(1.1.12)
可
以
证
明
,
d
2
(
x
,
y
)
是
X
上
定
义
的
距
离
(
证
明
见
第
二
章
第
2.2.3
节
)
可以证明,d_2(x, y) 是X上定义的距离(证明见第二章第2.2.3节)
可以证明,d2(x,y)是X上定义的距离(证明见第二章第2.2.3节)
考
虑
(
X
,
d
2
)
中
的
点
列
{
x
n
}
,
x
n
(
t
)
=
{
1
−
n
t
,
0
≤
t
≤
1
/
n
,
0
,
1
/
n
<
t
≤
1.
考虑(X, d_2)中的点列\lbrace x_n \rbrace, x_n(t) = \left \lbrace \begin{array}{l} 1 - nt, 0 \leq t \leq 1/n, \\ 0, \qquad 1/n < t \leq 1. \end{array} \right.
考虑(X,d2)中的点列{xn},xn(t)={1−nt,0≤t≤1/n,0,1/n<t≤1.
则
{
x
n
}
收
敛
到
x
0
≡
0.
则\lbrace x_n \rbrace 收敛到x_0 \equiv 0.
则{xn}收敛到x0≡0.
事
实
上
,
事实上,
事实上,
d
2
(
x
n
,
x
0
)
=
{
∫
0
1
∣
x
n
(
t
)
−
x
0
(
t
)
∣
2
d
t
}
1
2
d_2(x_n, x_0) = \lbrace \int_0^1 |x_n(t) - x_0(t)| ^2 dt \rbrace ^{\frac{1}{2}}
d2(xn,x0)={∫01∣xn(t)−x0(t)∣2dt}21
=
{
∫
0
1
n
(
1
−
n
t
)
2
d
t
}
1
2
=
(
3
n
)
−
1
2
→
0
=\lbrace \int_0^{\frac{1}{n}}(1-nt)^2 dt \rbrace ^{\frac{1}{2}} = (3n)^{-\frac{1}{2}} \to 0
={∫0n1(1−nt)2dt}21=(3n)−21→0
注
:
上
述
{
x
n
}
在
距
离
(
1.1.7
)
下
也
收
敛
到
x
0
.
注:上述\lbrace x_n \rbrace 在距离(1.1.7)下也收敛到x_0.
注:上述{xn}在距离(1.1.7)下也收敛到x0.
d
(
x
,
y
)
=
∫
0
1
∣
x
(
t
)
−
y
(
t
)
∣
d
t
(
1.1.7
)
d(x, y) = \int_0^1 |x(t) - y(t)| dt \quad (1.1.7)
d(x,y)=∫01∣x(t)−y(t)∣dt(1.1.7)
注
2
:
由
于
x
n
(
0
)
≡
1
,
{
x
n
}
并
不
一
致
收
敛
到
x
0
.
注2:由于x_n(0) \equiv 1, \lbrace x_n \rbrace 并不一致收敛到 x_0.
注2:由于xn(0)≡1,{xn}并不一致收敛到x0.
(
甚
至
x
n
(
t
)
都
不
是
每
点
收
敛
到
x
0
(
t
)
)
(甚至 x_n(t) 都不是每点收敛到x_0(t))
(甚至xn(t)都不是每点收敛到x0(t))
这
说
明
这
些
空
间
中
点
列
(
函
数
列
)
的
收
敛
与
C
[
a
,
b
]
中
点
列
的
收
敛
在
“
具
体
意
义
”
下
有
很
大
不
同
.
这说明这些空间中点列(函数列)的收敛与C[a, b]中点列的收敛\\\\ 在“具体意义”下有很大不同.
这说明这些空间中点列(函数列)的收敛与C[a,b]中点列的收敛在“具体意义”下有很大不同.
例
1.1.16
在
C
[
0
,
1
]
中
我
们
重
新
考
虑
上
面
的
例
子
.
例1.1.16 在C[0, 1]中我们重新考虑上面的例子.
例1.1.16在C[0,1]中我们重新考虑上面的例子.
对
于
∀
n
,
都
有
d
(
x
n
,
x
0
)
≡
1
,
于
是
{
x
n
}
不
收
敛
于
x
0
.
对于\forall n, 都有d(x_n, x_0) \equiv 1, 于是\lbrace x_n \rbrace不收敛于 x_0.
对于∀n,都有d(xn,x0)≡1,于是{xn}不收敛于x0.
初
学
者
可
能
会
认
为
{
x
n
}
趋
近
于
y
0
,
其
中
初学者可能会认为\lbrace x_n \rbrace 趋近于y_0,其中
初学者可能会认为{xn}趋近于y0,其中
y
0
(
t
)
=
{
1
,
t
=
0
,
0
,
0
<
t
<
1.
\qquad y_0(t) = \left \lbrace \begin{array}{l}1, \quad t = 0, \\ 0, 0 < t < 1. \end{array} \right.
y0(t)={1,t=0,0,0<t<1.
但
是
要
注
意
y
0
∈
‾
C
[
0
,
1
]
,
于
是
{
x
n
}
不
趋
近
于
y
0
.
但是要注意y_0 \overline{\in} C[0, 1],于是\lbrace x_n \rbrace 不趋近于y_0.
但是要注意y0∈C[0,1],于是{xn}不趋近于y0.
事
实
上
,
对
∀
N
,
∃
n
,
2
n
>
N
,
有
事实上,对\forall N, \exists n, 2n > N, 有
事实上,对∀N,∃n,2n>N,有
d
(
x
n
,
x
2
n
)
=
1
2
,
\qquad d(x_n, x_{2n}) = \dfrac{1}{2},
d(xn,x2n)=21,
可
见
在
空
间
C
[
0
,
1
]
中
,
点
列
{
x
n
}
不
收
敛
.
可见在空间C[0, 1]中,点列\lbrace x_n \rbrace 不收敛.
可见在空间C[0,1]中,点列{xn}不收敛.
注
:
由
上
述
例
子
可
知
,
同
一
个
点
列
,
在
不
同
的
距
离
空
间
中
收
敛
性
会
不
相
同
.
注:由上述例子可知,同一个点列,在不同的距离空间中收敛性会不相同.
注:由上述例子可知,同一个点列,在不同的距离空间中收敛性会不相同.
例
1.1.17
空
间
s
.
例1.1.17 空间s.
例1.1.17空间s.
设
s
=
{
{
ξ
n
}
}
,
即
全
体
实
数
列
组
成
的
集
合
.
定
义
设s = \lbrace \lbrace \xi_n \rbrace \rbrace,即全体实数列组成的集合.定义
设s={{ξn}},即全体实数列组成的集合.定义
d
(
x
,
y
)
=
∑
k
=
1
∞
1
2
k
∣
ξ
k
−
η
k
∣
1
+
∣
ξ
k
−
η
k
∣
(
1.1.13
)
\qquad d(x, y) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|} \quad (1.1.13)
d(x,y)=k=1∑∞2k11+∣ξk−ηk∣∣ξk−ηk∣(1.1.13)
其
中
x
=
{
ξ
k
}
,
y
=
{
η
k
}
,
则
其中 x = \lbrace \xi_k \rbrace, y = \lbrace \eta_k \rbrace, 则
其中x={ξk},y={ηk},则
(
1
)
s
为
距
离
空
间
;
(1) s 为距离空间;
(1)s为距离空间;
(
2
)
s
中
的
收
敛
是
按
坐
标
收
敛
,
即
(2) s 中的收敛是按坐标收敛,即
(2)s中的收敛是按坐标收敛,即
设
x
n
=
(
ξ
1
(
n
)
,
ξ
2
(
n
)
,
⋯
,
ξ
k
(
n
)
,
⋯
)
∈
s
,
设 x_n = (\xi_1^{(n)}, \xi_2^{(n)}, \cdots, \xi_k^{(n)}, \cdots ) \in s,
设xn=(ξ1(n),ξ2(n),⋯,ξk(n),⋯)∈s,
x
=
(
ξ
1
,
ξ
2
,
⋯
,
ξ
k
,
⋯
)
∈
s
,
x = (\xi_1, \xi_2, \cdots, \xi_k, \cdots) \in s,
x=(ξ1,ξ2,⋯,ξk,⋯)∈s,
则
“
d
(
x
n
,
x
)
→
0
(
n
→
∞
)
”
⇔
∀
k
,
ξ
k
(
n
)
→
ξ
k
(
n
→
∞
)
则“d(x_n, x) \to 0 (n \to \infty)” \Leftrightarrow \forall k, \xi_k^{(n)} \to \xi_k (n \to \infty)
则“d(xn,x)→0(n→∞)”⇔∀k,ξk(n)→ξk(n→∞)
分
析
(
1
)
:
要
证
s
为
距
离
空
间
,
只
要
证
明
在
s
中
所
定
义
的
距
离
d
满
足
距
离
定
义
4
条
即
可
.
分析(1):要证s为距离空间,只要证明在s中所定义的距离d满足距离定义4条即可.
分析(1):要证s为距离空间,只要证明在s中所定义的距离d满足距离定义4条即可.
其
中
(
1
)
,
(
2
)
,
(
3
)
显
然
成
立
,
只
要
验
证
(
4
)
三
角
不
等
式
成
立
,
即
其中(1),(2),(3)显然成立,只要验证(4)三角不等式成立,即
其中(1),(2),(3)显然成立,只要验证(4)三角不等式成立,即
d
(
x
,
y
)
≤
d
(
x
,
z
)
+
d
(
z
,
y
)
\qquad d(x, y) \leq d(x, z) + d(z, y)
d(x,y)≤d(x,z)+d(z,y)
利
用
函
数
φ
(
t
)
=
t
1
+
t
的
单
增
性
,
以
及
三
角
绝
对
值
不
等
式
,
可
以
加
以
证
明
.
利用函数 \varphi(t) = \dfrac{t}{1 + t}的单增性,以及三角绝对值不等式,可以加以证明.
利用函数φ(t)=1+tt的单增性,以及三角绝对值不等式,可以加以证明.
证
明
:
(
1
)
:
验
证
距
离
定
义
的
条
件
(
4
)
成
立
.
证明:(1):验证距离定义的条件(4)成立.
证明:(1):验证距离定义的条件(4)成立.
考
虑
φ
(
t
)
=
t
1
+
t
=
1
−
1
1
+
t
,
t
∈
(
0
,
∞
)
,
φ
(
t
)
是
单
增
的
.
考虑\varphi(t) = \dfrac{t}{1+t} = 1 - \dfrac{1}{1 + t}, t \in (0, \infty), \varphi(t)是单增的.
考虑φ(t)=1+tt=1−1+t1,t∈(0,∞),φ(t)是单增的.
设
x
=
{
ξ
k
}
,
y
=
{
η
k
}
,
z
=
{
ζ
k
}
,
由
于
设x = \lbrace \xi_k \rbrace, y = \lbrace \eta_k \rbrace, z = \lbrace \zeta_k \rbrace, 由于
设x={ξk},y={ηk},z={ζk},由于
∣
ξ
k
−
η
k
∣
≤
∣
ξ
k
−
ζ
k
∣
+
∣
ζ
k
−
η
k
∣
|\xi_k - \eta_k| \leq |\xi_k - \zeta_k| + |\zeta_k - \eta_k|
∣ξk−ηk∣≤∣ξk−ζk∣+∣ζk−ηk∣
结
合
φ
(
t
)
是
单
增
的
,
则
结合\varphi(t)是单增的, 则
结合φ(t)是单增的,则
∣
ξ
k
−
η
k
∣
1
+
∣
ξ
k
−
η
k
∣
≤
∣
ξ
k
−
ζ
k
∣
+
∣
ζ
k
−
η
k
∣
1
+
∣
ξ
k
−
ζ
k
∣
+
∣
ζ
k
−
η
k
∣
\dfrac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|} \leq \dfrac{|\xi_k - \zeta_k| + |\zeta_k - \eta_k|}{1 + |\xi_k - \zeta_k| + |\zeta_k - \eta_k|}
1+∣ξk−ηk∣∣ξk−ηk∣≤1+∣ξk−ζk∣+∣ζk−ηk∣∣ξk−ζk∣+∣ζk−ηk∣
≤
∣
ξ
k
−
ζ
k
∣
1
+
∣
ξ
k
−
ζ
k
∣
+
∣
ζ
k
−
η
k
∣
1
+
∣
ζ
k
−
η
k
∣
\leq \dfrac{|\xi_k - \zeta_k|}{1 + |\xi_k - \zeta_k|} + \dfrac{|\zeta_k - \eta_k|}{1 + |\zeta_k - \eta_k|}
≤1+∣ξk−ζk∣∣ξk−ζk∣+1+∣ζk−ηk∣∣ζk−ηk∣
在
上
面
不
等
式
两
边
乘
以
1
2
k
并
求
和
,
有
在上面不等式两边乘以\dfrac{1}{2^k}并求和,有
在上面不等式两边乘以2k1并求和,有
d
(
x
,
y
)
=
∑
k
=
1
∞
1
2
k
∣
ξ
k
−
η
k
∣
1
+
∣
ξ
k
−
η
k
∣
d(x, y) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|}
d(x,y)=k=1∑∞2k11+∣ξk−ηk∣∣ξk−ηk∣
≤
∑
k
=
1
∞
1
2
k
∣
ξ
k
−
ζ
k
∣
1
+
∣
ξ
k
−
ζ
k
∣
+
∑
k
=
1
∞
1
2
k
∣
ζ
k
−
η
k
∣
1
+
∣
ζ
k
−
η
k
∣
\leq \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k}\dfrac{|\xi_k - \zeta_k|}{1 + |\xi_k - \zeta_k|} + \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\zeta_k - \eta_k|}{1 + |\zeta_k - \eta_k|}
≤k=1∑∞2k11+∣ξk−ζk∣∣ξk−ζk∣+k=1∑∞2k11+∣ζk−ηk∣∣ζk−ηk∣
=
d
(
x
,
z
)
+
d
(
z
,
y
)
= d(x, z) + d(z, y)
=d(x,z)+d(z,y)
我
们
把
这
个
距
离
空
间
记
为
s
.
我们把这个距离空间记为s.
我们把这个距离空间记为s.
分
析
(
2
)
:
要
证
明
d
(
x
n
,
x
)
→
0
⇔
∀
k
,
ξ
k
(
n
)
→
ξ
k
.
分析(2):要证明d(x_n, x) \to 0 \Leftrightarrow \forall k, \xi_k^{(n)} \to \xi_k.
分析(2):要证明d(xn,x)→0⇔∀k,ξk(n)→ξk.
必
要
性
要
证
:
对
于
任
意
给
定
的
k
0
∈
N
,
要
能
做
到
:
必要性要证:对于任意给定的k_0 \in N, 要能做到:
必要性要证:对于任意给定的k0∈N,要能做到:
∀
ε
>
0
,
∃
N
,
∀
n
>
N
,
有
∣
ξ
k
0
(
n
)
−
ξ
k
0
∣
<
ε
\forall \varepsilon > 0, \exists N, \forall n > N, 有|\xi_{k_0}^{(n)} - \xi_{k_0}| < \varepsilon
∀ε>0,∃N,∀n>N,有∣ξk0(n)−ξk0∣<ε
证
明
(
2
)
:
必
要
性
.
证明(2):必要性.
证明(2):必要性.
对
于
任
意
给
定
的
k
0
,
对
于
∀
ε
>
0
,
令
ε
0
=
1
2
k
0
ε
1
+
ε
>
0
,
对于任意给定的k_0, 对于\forall \varepsilon > 0, 令 \varepsilon_0 = \dfrac{1}{2^{k_0}} \dfrac{\varepsilon}{1 + \varepsilon} > 0,
对于任意给定的k0,对于∀ε>0,令ε0=2k011+εε>0,
当
n
>
N
时
,
有
d
(
x
n
,
x
)
<
ε
0
,
即
:
当 n > N时, 有d(x_n, x) < \varepsilon_0,即:
当n>N时,有d(xn,x)<ε0,即:
$d(x_n, x) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|} < \varepsilon_0 = \dfrac{1}{2^{k_0}} \dfrac{\varepsilon}{1 + \varepsilon}, $
由
于
每
项
都
是
正
的
,
于
是
我
们
有
由于每项都是正的,于是我们有
由于每项都是正的,于是我们有
1
2
k
0
∣
ξ
k
0
(
n
)
−
ξ
k
0
∣
1
+
∣
ξ
k
0
(
n
)
−
ξ
k
0
∣
<
1
2
k
0
ε
1
+
ε
,
(
n
>
N
)
\dfrac{1}{2^{k_0}} \dfrac{|\xi_{k_0}^{(n)} - \xi_{k_0}|}{1 + |\xi_{k_0}^{(n)} - \xi_{k_0}|} < \dfrac{1}{2^{k_0}} \dfrac{\varepsilon}{1 + \varepsilon}, (n > N)
2k011+∣ξk0(n)−ξk0∣∣ξk0(n)−ξk0∣<2k011+εε,(n>N)
$结合 \varphi(t) = \dfrac{t}{1 + t} 是单增的,有 |\xi_{k_0}^{(n)} - \xi_{k_0}| < \varepsilon, $
即
ξ
k
0
(
n
)
→
ξ
k
0
(
n
→
∞
)
即 \xi_{k_0}^{(n)} \to \xi_{k_0} (n \to \infty)
即ξk0(n)→ξk0(n→∞)
分
析
(
2
)
:
充
分
性
我
们
要
证
:
分析(2):充分性我们要证:
分析(2):充分性我们要证:
∀
k
,
ξ
k
(
n
)
→
ξ
k
(
n
→
∞
)
⇒
d
(
x
n
,
x
)
→
0
(
n
→
∞
)
\forall k, \xi_k^{(n)} \to \xi_k(n \to \infty) \Rightarrow d(x_n, x) \to 0 (n \to \infty)
∀k,ξk(n)→ξk(n→∞)⇒d(xn,x)→0(n→∞)
即
要
证
明
:
d
(
x
n
,
x
)
=
∑
k
=
1
∞
1
2
k
∣
ξ
k
(
n
)
−
ξ
k
∣
1
+
∣
ξ
k
(
n
)
−
ξ
k
∣
→
0
(
n
→
∞
)
即要证明:d(x_n, x) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|} \to 0 (n \to \infty)
即要证明:d(xn,x)=k=1∑∞2k11+∣ξk(n)−ξk∣∣ξk(n)−ξk∣→0(n→∞)
注
意
到
收
敛
的
级
数
,
充
分
靠
后
面
的
无
穷
多
项
的
和
可
任
意
小
.
对
于
前
面
的
有
限
项
,
注意到收敛的级数,充分靠后面的无穷多项的和可任意小.对于前面的有限项,
注意到收敛的级数,充分靠后面的无穷多项的和可任意小.对于前面的有限项,
由
条
件
可
以
找
到
共
同
的
N
,
当
n
>
N
时
,
级
数
中
的
这
些
项
都
一
致
很
小
.
由条件可以找到共同的N,当n > N时,级数中的这些项都一致很小.
由条件可以找到共同的N,当n>N时,级数中的这些项都一致很小.
证
明
(
2
)
充
分
性
.
证明(2)充分性.
证明(2)充分性.
对
于
∀
ε
>
0
,
∃
K
,
使
得
∑
k
=
K
+
1
∞
1
2
k
<
1
2
ε
对于\forall \varepsilon > 0, \exists K, 使得\sum \limits_{k=K+1}^{\infty} \dfrac{1}{2^k} < \dfrac{1}{2} \varepsilon
对于∀ε>0,∃K,使得k=K+1∑∞2k1<21ε
由
于
ξ
k
(
n
)
→
ξ
k
(
n
→
∞
)
(
k
=
1
,
2
,
⋯
,
K
)
,
由于\xi_k^{(n)} \to \xi_k(n \to \infty)(k=1, 2, \cdots, K),
由于ξk(n)→ξk(n→∞)(k=1,2,⋯,K),
所
以
存
在
N
,
当
n
>
N
时
,
∣
ξ
k
(
n
)
−
ξ
k
∣
<
ε
2
(
k
=
1
,
2
,
⋯
,
K
)
所以存在N,当n > N时, |\xi_k^{(n)} - \xi_k| < \dfrac{\varepsilon}{2} (k = 1, 2, \cdots, K)
所以存在N,当n>N时,∣ξk(n)−ξk∣<2ε(k=1,2,⋯,K)
于
是
当
n
>
N
时
,
于是当n > N时,
于是当n>N时,
d
(
x
n
,
x
)
=
∑
k
=
1
∞
1
2
k
∣
ξ
k
(
n
)
−
ξ
k
∣
1
+
∣
ξ
k
(
n
)
−
ξ
k
∣
d(x_n, x) = \sum \limits_{k=1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|}
d(xn,x)=k=1∑∞2k11+∣ξk(n)−ξk∣∣ξk(n)−ξk∣
=
∑
k
=
1
K
1
2
k
∣
ξ
k
(
n
)
−
ξ
k
∣
1
+
∣
ξ
k
(
n
)
−
ξ
k
∣
+
∑
k
=
K
+
1
∞
1
2
k
∣
ξ
k
(
n
)
−
ξ
k
∣
1
+
∣
ξ
k
(
n
)
−
ξ
k
∣
=\sum \limits_{k=1}^{K} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|} + \sum \limits_{k=K+1}^{\infty} \dfrac{1}{2^k} \dfrac{|\xi_k^{(n)} - \xi_k|}{1 + |\xi_k^{(n)} - \xi_k|}
=k=1∑K2k11+∣ξk(n)−ξk∣∣ξk(n)−ξk∣+k=K+1∑∞2k11+∣ξk(n)−ξk∣∣ξk(n)−ξk∣
<
1
2
ε
∑
k
=
1
K
1
2
k
+
∑
k
=
K
+
1
∞
1
2
k
<
ε
< \dfrac{1}{2} \varepsilon \sum \limits_{k=1}^{K} \dfrac{1}{2^k} + \sum \limits_{k=K+1}^{\infty} \dfrac{1}{2^k} < \varepsilon
<21εk=1∑K2k1+k=K+1∑∞2k1<ε
即
{
x
n
}
在
s
中
收
敛
到
x
.
即\lbrace x_n \rbrace 在s 中收敛到x.
即{xn}在s中收敛到x.
$注:在上面有关级数的证明中, 由级数的收敛性, 先让后面项的和“很小”, $
再
对
前
面
的
有
限
项
进
行
估
计
,
这
是
很
常
用
的
方
法
.
再对前面的有限项进行估计,这是很常用的方法.
再对前面的有限项进行估计,这是很常用的方法.
例
1.1.18
空
间
S
.
例1.1.18 空间S.
例1.1.18空间S.
S
中
的
元
素
为
E
上
全
体
几
乎
处
处
有
限
的
可
测
函
数
,
S中的元素为E上全体几乎处处有限的可测函数,
S中的元素为E上全体几乎处处有限的可测函数,
其
中
E
⊂
R
是
一
个
L
e
b
e
s
g
u
e
可
测
集
,
且
m
E
<
∞
其中E \subset R是一个Lebesgue 可测集, 且m E < \infty
其中E⊂R是一个Lebesgue可测集,且mE<∞
对
于
x
=
x
(
t
)
,
y
=
y
(
t
)
∈
S
,
定
义
对于x = x(t), y = y(t) \in S, 定义
对于x=x(t),y=y(t)∈S,定义
d
(
x
,
y
)
=
∫
E
∣
x
(
t
)
−
y
(
t
)
∣
1
+
∣
x
(
t
)
−
y
(
t
)
∣
d
t
\qquad d(x, y) = \int_E \dfrac{|x(t) - y(t)|}{1 + |x(t) - y(t)|} dt
d(x,y)=∫E1+∣x(t)−y(t)∣∣x(t)−y(t)∣dt
则
则
则
(
1
)
S
为
距
离
空
间
;
(1) S为距离空间;
(1)S为距离空间;
(
2
)
S
中
的
收
敛
是
依
测
度
收
敛
.
(2) S中的收敛是依测度收敛.
(2)S中的收敛是依测度收敛.
即
d
(
x
n
,
x
)
→
0
(
n
→
∞
)
等
价
于
x
n
→
m
x
(
n
→
∞
)
(
依
测
度
收
敛
)
即d(x_n, x) \to 0 (n \to \infty)等价于x_n \stackrel{m}{\to} x(n \to \infty)(依测度收敛)
即d(xn,x)→0(n→∞)等价于xn→mx(n→∞)(依测度收敛)
(
1
)
用
例
1.1.17
的
方
法
可
证
明
S
是
一
个
距
离
空
间
.
(1)用例1.1.17的方法可证明S是一个距离空间.
(1)用例1.1.17的方法可证明S是一个距离空间.
(
2
)
分
析
(
⇒
)
:
(2)分析(\Rightarrow):
(2)分析(⇒):
由
d
(
x
n
,
x
)
→
0
要
推
出
x
n
→
m
x
(
n
→
∞
)
由d(x_n, x) \to 0 要推出x_n \stackrel{m}{\to} x(n \to \infty)
由d(xn,x)→0要推出xn→mx(n→∞)
什
么
是
依
测
度
收
敛
?
什么是依测度收敛?
什么是依测度收敛?
x
n
→
m
x
(
n
→
∞
)
⇔
对
于
∀
σ
>
0
,
x_n \stackrel{m}{\to} x (n \to \infty) \Leftrightarrow 对于\forall \sigma > 0,
xn→mx(n→∞)⇔对于∀σ>0,
m
{
t
∈
E
∣
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
}
→
0
(
n
→
∞
)
,
m \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma \rbrace \to 0 (n \to \infty),
m{t∈E∣∣xn(t)−x(t)∣≥σ}→0(n→∞),
即
对
于
∀
σ
>
0
,
∀
ε
>
0
,
存
在
N
,
当
n
>
N
时
,
即对于\forall \sigma > 0, \forall \varepsilon > 0, 存在N,当n > N时,
即对于∀σ>0,∀ε>0,存在N,当n>N时,
m
{
t
∈
E
∣
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
}
<
ε
m \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma \rbrace < \varepsilon
m{t∈E∣∣xn(t)−x(t)∣≥σ}<ε
我
们
将
集
合
E
分
成
两
部
分
:
我们将集合E分成两部分:
我们将集合E分成两部分:
对
于
任
意
给
定
的
σ
>
0
和
自
然
数
n
,
令
对于任意给定的\sigma > 0 和自然数n, 令
对于任意给定的σ>0和自然数n,令
$E_1 = \lbrace t \in E | |x_n(t) - x(t) | < \sigma \rbrace, $
$E_2 = \lbrace t \in E | |x_n(t) - x(t) | \geq \sigma \rbrace, $
E
=
E
1
∪
E
2
E = E_1 \cup E_2
E=E1∪E2
利
用
函
数
t
1
+
t
单
增
来
证
明
利用函数\dfrac{t}{1 + t} 单增来证明
利用函数1+tt单增来证明
m
{
t
∈
E
∣
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
}
→
0
(
n
→
∞
)
m \lbrace t \in E | |x_n(t) - x(t) | \geq \sigma \rbrace \to 0 (n \to \infty)
m{t∈E∣∣xn(t)−x(t)∣≥σ}→0(n→∞)
证
明
(
2
)
:
对
于
任
意
给
定
的
σ
>
0
,
由
证明(2):对于任意给定的\sigma > 0,由
证明(2):对于任意给定的σ>0,由
d
(
x
n
,
x
)
=
∫
E
∣
x
n
(
t
)
−
x
(
t
)
∣
1
+
∣
x
n
(
t
)
−
x
(
t
)
∣
d
t
d(x_n, x) = \int_E \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt
d(xn,x)=∫E1+∣xn(t)−x(t)∣∣xn(t)−x(t)∣dt
≥
∫
{
t
∈
E
∣
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
}
∣
x
n
(
t
)
−
x
(
t
)
∣
1
+
∣
x
n
(
t
)
−
x
(
t
)
∣
d
t
\geq \int _{ \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma \rbrace} \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt
≥∫{t∈E∣∣xn(t)−x(t)∣≥σ}1+∣xn(t)−x(t)∣∣xn(t)−x(t)∣dt
因
为
t
1
+
t
单
增
,
而
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
,
于
是
因为\dfrac{t}{1+t}单增,而|x_n(t) - x(t)| \geq \sigma, 于是
因为1+tt单增,而∣xn(t)−x(t)∣≥σ,于是
d
(
x
n
,
x
)
≥
∫
{
t
∈
E
∣
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
}
σ
1
+
σ
d
t
d(x_n, x) \geq \int_{ \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma \rbrace } \dfrac{\sigma}{1 + \sigma} dt
d(xn,x)≥∫{t∈E∣∣xn(t)−x(t)∣≥σ}1+σσdt
=
σ
1
+
σ
m
{
t
∈
E
∣
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
}
(
1.1.14
)
= \dfrac{\sigma}{1+\sigma} m \lbrace t \in E | |x_n(t) - x(t) | \geq \sigma \rbrace \quad (1.1.14)
=1+σσm{t∈E∣∣xn(t)−x(t)∣≥σ}(1.1.14)
由
于
d
(
x
n
,
x
)
→
0
(
n
→
∞
)
,
σ
给
定
,
由
不
等
式
由于 d(x_n, x) \to 0(n \to \infty), \sigma 给定, 由不等式
由于d(xn,x)→0(n→∞),σ给定,由不等式
d
(
x
n
,
x
)
≥
σ
1
+
σ
m
{
t
∈
E
∣
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
}
d(x_n, x) \geq \dfrac{\sigma}{1+\sigma} m \lbrace t \in E | | x_n(t) - x(t)| \geq \sigma \rbrace
d(xn,x)≥1+σσm{t∈E∣∣xn(t)−x(t)∣≥σ}
推
出
推出
推出
m
{
t
∈
E
∣
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
}
→
0
(
n
→
∞
)
m \lbrace t \in E | |x_n(t) - x(t) | \geq \sigma \rbrace \to 0 (n \to \infty)
m{t∈E∣∣xn(t)−x(t)∣≥σ}→0(n→∞)
反
之
,
由
x
n
(
t
)
→
m
x
(
t
)
(
n
→
∞
)
,
可
推
出
反之,由x_n(t) \stackrel{m}{\to} x(t) (n \to \infty),可推出
反之,由xn(t)→mx(t)(n→∞),可推出
d
(
x
n
,
x
)
→
0
(
n
→
∞
)
.
事
实
上
,
d(x_n, x) \to 0 (n \to \infty).事实上,
d(xn,x)→0(n→∞).事实上,
d
(
x
n
,
x
)
=
∫
E
∣
x
n
(
t
)
−
x
(
t
)
∣
1
+
∣
x
n
(
t
)
−
x
(
t
)
∣
d
t
d(x_n, x) = \int_E \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt
d(xn,x)=∫E1+∣xn(t)−x(t)∣∣xn(t)−x(t)∣dt
=
∫
E
1
∣
x
n
(
t
)
−
x
(
t
)
∣
1
+
∣
x
n
(
t
)
−
x
(
t
)
∣
d
t
+
∫
E
2
∣
x
n
(
t
)
−
x
(
t
)
∣
1
+
∣
x
n
(
t
)
−
x
(
t
)
∣
d
t
= \int_{E_1} \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt + \int_{E_2} \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt
=∫E11+∣xn(t)−x(t)∣∣xn(t)−x(t)∣dt+∫E21+∣xn(t)−x(t)∣∣xn(t)−x(t)∣dt
≤
∫
E
1
σ
1
+
σ
d
t
+
∫
E
2
∣
x
n
(
t
)
−
x
(
t
)
∣
1
+
∣
x
n
(
t
)
−
x
(
t
)
∣
d
t
\leq \int_{E_1}\dfrac{\sigma}{1+\sigma} dt + \int_{E_2} \dfrac{|x_n(t) - x(t)|}{1 + |x_n(t) - x(t)|} dt
≤∫E11+σσdt+∫E21+∣xn(t)−x(t)∣∣xn(t)−x(t)∣dt
≤
σ
1
+
σ
m
E
+
m
E
2
\leq \dfrac{\sigma}{1+\sigma} m E + mE_2
≤1+σσmE+mE2
对
于
∀
ε
>
0
,
取
σ
0
m
E
<
ε
2
,
对
于
此
σ
0
>
0
,
上
式
成
立
.
对于\forall \varepsilon > 0, 取\sigma_0 m E < \dfrac{\varepsilon}{2},对于此\sigma_0 > 0, 上式成立.
对于∀ε>0,取σ0mE<2ε,对于此σ0>0,上式成立.
由
由
由
m
E
2
=
m
{
t
∈
E
∣
∣
x
n
(
t
)
−
x
(
t
)
∣
≥
σ
0
}
→
0
,
m E_2 = m \lbrace t \in E | |x_n(t) - x(t)| \geq \sigma_0 \rbrace \to 0,
mE2=m{t∈E∣∣xn(t)−x(t)∣≥σ0}→0,
存
在
N
,
当
n
≥
N
时
,
m
E
2
<
ε
2
.
存在N, 当 n \geq N 时, m E_2 < \dfrac{\varepsilon}{2}.
存在N,当n≥N时,mE2<2ε.
(
这
里
用
到
了
依
测
度
收
敛
)
(这里用到了依测度收敛)
(这里用到了依测度收敛)
于
是
于是
于是
d
(
x
n
,
x
)
≤
σ
0
1
+
σ
0
m
E
+
m
E
2
d(x_n, x) \leq \dfrac{\sigma_0}{1+\sigma_0} m E + m E_2
d(xn,x)≤1+σ0σ0mE+mE2
$ < \sigma_0 m E + \dfrac{\varepsilon}{2} = \dfrac{\varepsilon}{2} + \dfrac{\varepsilon}{2} = \varepsilon$
即
d
(
x
n
,
x
)
→
0
(
n
→
∞
)
即 d(x_n, x) \to 0 (n \to \infty)
即d(xn,x)→0(n→∞)