泛函分析 03.04 内积空间与Hilbert空间 - 正交基和正交列的完备性

§3.4 

 

3.3.15,:xH, 
xFourier n=1  (x,e n )e n . 
: n=1  (x,e n )e n x? 
:. 

3.4.1R 3 ,e 1 =(1,0,0),e 2 =(0,1,0)R 3  
,x=(1,1,1)R 3 , 
(x,e 1 )e 1 +(x,e 2 )e 2 x. 

3.4.2{e n }HilbertH, 
S={e 2n } nN ,SH 
, 
x=e 1 ,α 2n ,x n=1  α 2n e 2n . 
,x=e 1 = n=1  α 2n e 2n ,m, 
0=(e 1 ,e 2m )=( n=1  α 2n e 2n ,e 2m )=(lim k  n=1 k α 2n e 2n ,e 2m ) 
lim k ( n=1 k α 2n e 2n ,e 2m )=α 2m , 
x= n=1  α 2n e 2n =0,. 
:使, 
3.3.15,xFourier, 
x. 
:,. 

3.4.3{x α } αI X, 
X,{x α } αI X. 

3.4.4R n  
e k =(0,0,,0, 1 k ,0,,0),k=1,2,,n. 
R n . 

3.4.5l 2  
e n =(0,0,,0, 1 n ,0,),n=1,2, 
l 2 . 
:l 2 : 
x,yl 2 ,x={ξ k },y={η k }, 
(x,y)= k=1  ξ k η k  ¯ ¯ ¯   
(1){e n }l 2 . 
(2). 
 
{e n }. 
H{e n }. 
: 
xH,{x n }span{e i }  i=1 ,使 
x n x(n) 
,xH,x=(ξ 1 ,,ξ k ,), 
x n = k=1 n ξ k e k  
 
x n x=( k=n+1  ξ k e k , k=n+1  ξ k e k ) 12   
=( k=n+1  |ξ k | 2 ) 12  0(n), 
x{x n }线. 
H{e n }. 
{e n }. 

3.4.2 

3.4.6X,{e n }X, 
xX. 
 k=1  |(x,e k )| 2 =x 2 (3.4.1) 
x{e n }Parseval. 
xH,Parseval,{e n }. 
1,Parseval. 
2Hilbert, 
x{e n }Fourierx, 
x{e n }Parseval. 

3.4.7{e n }HilbertH, 
: 
(1){e n }  ={0}({e n }); 
(2)xH,x= k=1  (x,e k )e k  
(xFourierx); 
(3)span ¯ ¯ ¯ ¯ ¯ ¯ ¯  {e n }=H 
({e n }H); 
(4)xH,x 2 = k=1  |(x,e k )| 2 , 
{e n },xH,Parseval. 
:(1)(2)xH,y=x k=1  (x,e k )e k . 
:{e n }  ={0}, 
:y=0. 
mN,, 
(y,e m )=(x,e m )( n=1  (x,e n )e n ,e m ) 
=(x,e m )lim k ( n=1 k (x,e n )e n ,e m ) 
=(x,e m )lim k ( n=1 k (x,e n )(e n ,e m )) 
=(x,e m )(x,e m )=0 
{e n }  ={0}, 
y=0,x= k=1  (x,e k )e k . 
(2)(3),: 
x= k=1  (x,e k )e k ,span ¯ ¯ ¯ ¯ ¯ ¯ ¯  {e n }=H, 
xH,xspan ¯ ¯ ¯ ¯ ¯ ¯ ¯  {e n }. 
xH,(2) 
x= n=1  (x,e n )e n =lim k ( n=1 k (x,e n )e n ), 
 n=1 k (x,e n )e n span{e n }, 
xspan ¯ ¯ ¯ ¯ ¯ ¯ ¯  {e n },span ¯ ¯ ¯ ¯ ¯ ¯ ¯  {e n }=H. 
(3)(1)span ¯ ¯ ¯ ¯ ¯ ¯ ¯  {e n }=H{e n }  ={0}. 
y{e n }  ,y=0. 
, 
(i)y{e n }  ,(y,e n )=0(nN), 
e n {y}  (nN),span{e n }{y}  . 
(ii), 
{y}  . 
(iii)span ¯ ¯ ¯ ¯ ¯ ¯ ¯  {e n }{y}  . 
(iv)span ¯ ¯ ¯ ¯ ¯ ¯ ¯  {e n }=H,{y}  =H. 
(y,y)=0,y=0. 
(1)(3). 
(2)(4)xH, 
x= k=1  (x,e k )e k x 2 = k=1  |(x,e k )| 2  
xH,x= k=1  (x,e k )e k , 
. 
xH,x= k=1  (x,e k )e k , 
x 2 = k=1  (x,e k )e k  2 =lim k  k=1 n (x,e k )e k  2  
=lim n  k=1 n |(x,e k )| 2 = k=1  |(x,e k )| 2  
(),{e n }. 
(4)(1)xH,x 2 = k=1  |(x,e k )| 2  
{e n }  ={0},. 
:xH,(x,e n )=0,n=1,2,,x=0. 
,Parseval(3.4.1). 
(x,e n )=0(n=1,2,), 
x 2 = k=1  |(x,e k )| 2 =0, 
x=0.. 
1, 
{e n },Bessel(3.3.4) 
,Parseval(3.4.1). 
2{e n }Hilbert,x 
{e n }Fourier n=1  (x,e n )e n x. 
3,, 
. 

3.4.3 

3.4.8: 
{e n }={12π − −    ,1π    cost,1π    sint,,1π    coskt,1π    sinkt,}, 
L 2 [π,π]. 
:3.3.7{e n }. 
3.4.7,span{e n }L 2 [π,π]. 
:(1)2.2.9:L 2 [π,π]. 
xL 2 [π,π]ε>0, 
2πy(t),使 
x(t)y(t) L 2  <ε2 , 
(2)y(t)ε>0, 
StoneWeierstrass,[π,π]y(t) 
(参阅 Walter Rudin, “Principles of Mathematical Analysis” p.190).
 
T(t)=a 0 + k=1 m a k coskt+b k sinkt 
使y(t)T(t) L 2  <ε2 . 
(3) 
x(t)T(t) L 2  x(t)y(t) L 2  +y(t)T(t) L 2  <ε. 
(span{e n })L 2 [π,π]. 
{e n }L 2 [π,π]. 
1x(t)L 2 [π,π], 
x(t)= k=1  (x,e k )e k =a 0 2 + k=1  a k coskt+b k sinkt, 
x 2 = k=1  |(x,e k )| 2 . 
2(=),L 2 ,n, 
 π π |x(t)(a 0 2 + k=1 n a k coskt+b k sinkt)| 2 dt0,n. 
Fourier, 
Fourier. 
L 2 . 
fourier展开
31913,x(t)L 2 Fourierx(t), 
1966,L.Carleson. 
x(t)L 2 , 
lim n (a 0 2 + k=1 n a k coskt+b k sinkt)=x(t)(3.4.2) 
. 
4HilbertL 2  
3.4.8, 
(), 
3.3.4LegendreL 2 [1,1]. 
5Hilbert, 
,. 

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值