使用Llama-factory微调Llama3教程

一、登录OpenBayes进行注册登录

通过以下链接,新用户注册登录 OpenBayes , 即可获得 四个小时 RTX 4090免费使用时长 !!

注册链接:https://openbayes.com/console/signup?r=zzl99_WBHM

二、创建容器

模型训练=》创建容器=》填写容器名称=》下一步

 

format,png

选择一台4090,2.1-gpu,python-3.10,cudu-12.1,然后执行

三、配置环境

首先需要下载llama-factory源码,执行如下命令

 #下载 
!git clone https://github.com/hiyouga/LLaMA-Factory.git
 

安装所需的模块,可以按需下载

cd LLaMA-Factory
#可选的额外依赖项:metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
pip install -e .[torch,metrics]

​注意:

### 使用 LLaMA-FactoryLLaMA3 模型进行微调 #### 准备工作环境 为了确保顺利运行,需先准备服务器上的开发环境。这包括但不限于更新 `pip` 到最新版本以便更好地管理Python包。 ```bash python -m pip install --upgrade pip ``` #### 下载并配置 LLaMA-Factory 获取 LLaMA-Factory 的源码对于后续操作至关重要。通过GitHub仓库地址下载项目文件,并按照官方说明完成必要的设置[^3]。 ```bash git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory ``` #### 安装依赖项 安装所需的Python库和其他资源是必不可少的一环。通常情况下,这些需求会被记录在一个名为 `requirements.txt` 文件里;执行下面这条指令即可自动处理好所有的依赖关系: ```bash pip install -r requirements.txt ``` #### 数据预处理 针对特定任务调整模型之前,准备好训练数据集非常重要。根据具体应用场景的不同,可能涉及到文本清洗、分词等一系列准备工作。这部分的具体实现会依据所使用的数据集而变化,在此不做详述。 #### 开始微调过程 一旦前期准备工作就绪,则可以通过指定参数启动实际的微调流程。具体的命令行选项取决于个人的需求以及硬件条件等因素。例如,如果希望利用GPU加速计算速度的话,可以在命令中加入相应的标志位。 ```bash python finetune.py \ --model_name_or_path path_to_model \ --train_file path_to_train_data.jsonl \ --output_dir output_directory \ --per_device_train_batch_size 8 \ --learning_rate 5e-5 \ --num_train_epochs 3\ --save_steps 10_000 \ --logging_steps 1_000 \ --do_train ``` 上述命令中的各个参数可以根据实际情况灵活调整,比如批量大小(`batch size`)、学习率(`learning rate`)等超参的选择应该基于实验结果不断优化[^1]。 #### 可视化调试 借助于 Gradio 提供的强大功能,能够轻松搭建起直观易用的操作界面,使得开发者能够在浏览器端实时查看模型的表现情况。只需简单输入一条命令就能开启这个便捷的功能[^2]: ```bash llamafactory-cli webui ``` 这样不仅有助于监控整个训练进程的状态,同时也便于后期对生成的内容质量做出评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值