将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。
代码为:
// 质因数.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include<cmath>
#include<cstdlib>
#include<iostream>
using namespace std;
void Analyse(int n)
{
//打印出
int i;
for(i = 2;i <= sqrt(static_cast<double>(n));i++)
{
if(n % i == 0)
{
n = n/i;
cout<<i<<"*";
i--;
}
}
cout<<n<<endl;
}
int _tmain(int argc, _TCHAR* argv[])
{
int n;
cin>>n;
cout<<n<<" = ";
Analyse(n);
return 0;
}
程序执行结果为
博客上看到另一种解法,感觉思路很好,其思路为:
对n进行分解质因数,应先找到一个最小得质数k,然后按下述步骤完成:
(1)如果这个质数恰等于n,则说明分解质因数得过程已经结束,打印出即可.
(2)如果n>=k,但n能被k整除,则应打印出k的值,并用n除以k得商,作为新的正整数n,重复执行第一步。
(3)如果n不能被k整除,则用k+1作为k的值,重复执行第一步
实现代码为:
// 质因数.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include<cmath>
#include<cstdlib>
#include<iostream>
using namespace std;
void Analyse(int n)
{
//首先输出等式左边部分
cout<<n<<" = ";
//对n进行质因数分解,应先找到一个最小的质数2
//如果这个质数恰好等于2,则说明分解质因素的过程结束,打印
if(n == 2)
{
cout<<n<<endl;
}
//n小于2时,无法进行质因素分解,提示相应信息
else if(n < 2)
{
cout<<"该数不可以分解质因素"<<endl;
}
else
{
//如果n>=k,但n能被k整数,则打印出k的值
for(int i = 2;i <= sqrt(static_cast<double>(n));i++)
{
if(n % i == 0)
{
n = n/i;
cout<<i<<"*";
//重复执行上一步
i--;
}
//cout<<n<<endl;
}
cout<<n<<endl;
}
}
int _tmain(int argc, _TCHAR* argv[])
{
int n;
cin>>n;
//cout<<n<<endl;
Analyse(n);
return 0;
}
程序实现效果为: