gsc框架下bf和bm路的构造

bf的构造

  • 根据方向得到的导向向量构造类似于 w = [ e j w τ 1 e j w τ 2 e j w τ 3 . . . ] w=[e^{jw\tau1} \quad e^{jw\tau2} \quad e^{jw\tau3}...] w=[ejwτ1ejwτ2ejwτ3...],得到 y = w H x y=w^Hx y=wHx
  • 根据ratio of transfer function构造得到类似于 w = [ w 1 w 2 w 3 ] w=[w_1 \quad w_2 \quad w_3] w=[w1w2w3],得到 y = w H x y=w^Hx y=wHx

bf构造的核心在于w*a=1,其中a为期望信号的传递函数。也就是说波束路首先需要的是保语音,至于去噪能力,能有多少就是多少了,而w的构造,只要满足如上关系都可以。 不同的w有不同的噪声的抑制能力。如果可以实现 m i n ( w H R n w ) min(w^HR_nw) min(wHRnw)当然是更好的,这不就是一个mvdr了嘛。

bm的意义和构造方式

bm路是消掉语音后的噪声/干扰信号,然后再基于bm数据做anc和主通路的噪声实现对消。其实如果对于anc路的控制比较好的话是不需要在bm路先消除掉语音的,但为什么对于bm是一个强需求呢?

  • bm路和bf过完anc后的数据方便进行后处理,这是我认为最有价值的地方。
  • bf路和mic数据在控制好的情况下也能够实现anc不消语音,但和直接bm路消除完语音后再anc,存在显式bm有助于降低anc伤语音的压力,而且因为大多数情况下期望信号符合点源假设,BM是比较容易实现的。

bm路需要达到的效果是:要求对期望语音信号消除,对噪声部分没有要求。 通过构造:
U = I − a w H a H w , 其 中 a H w = 1 U=I-\frac{aw^H}{a^Hw},其中a^Hw=1 U=IaHwawHaHw=1,a为ratio of transfer function, w w w为波束路的滤波器系数(可以是任意方法得到的), U U U即为阻塞矩阵。
如上后满足: [ U 1 , U 2 , U . . . ] H R s w = [ 0 , 0 , 0.. ] H [U_1,U_2,U_...]^HR_sw=[0,0,0..]^H [U1,U2,U...]HRsw=[0,0,0..]H,其中 R s = a a H R_s=aa^H Rs=aaH
如何证明如上等式成立?我们对简单的二维情况进行验证,a=[ a 1 a 2 a_1 \quad a_2 a1a2],w=[ w 1 w 2 w_1 \quad w_2 w1w2]。则有:
a H w ∗ U = [ a H w ∗ I − a w H ] = ( a 2 w 2 − a 1 w 2   − a 2 w 1 a 1 w 1 ) = ( w 2 w 1 ) ( a 2 − a 1 − a 2 a 1 ) a^Hw*U=[a^Hw*I-aw^H]=\begin{pmatrix}a_2w_2\quad -a_1w_2\\ \ -a_2w_1 \quad a_1w_1\end{pmatrix}=\begin{pmatrix}w_2\\&w_1\end{pmatrix}\begin{pmatrix}a_2\quad -a_1\\ -a_2 \quad a_1\end{pmatrix} aHwU=[aHwIawH]=(a2w2a1w2 a2w1a1w1)=(w2w1)(a2a1a2a1)
a H w ∗ U ∗ R s w = a H w U a a H w = U a = [ 0 , 0 ] H a^Hw*U*R_sw=a^HwUaa^Hw=Ua=[0,0]^H aHwURsw=aHwUaaHw=Ua=[0,0]H
需要指出的是,在 a , w a,w a,w确定的情况下上述公式只满足了对 R s R_s Rs的正交,对于 [ U 1 , U 2 , U . . . ] H R n w [U_1,U_2,U_...]^HR_nw [U1,U2,U...]HRnw是没有要求的,而且只有 [ U 1 , U 2 , U . . . ] H R n w ≠ 0 [U_1,U_2,U_...]^HR_nw\neq0 [U1,U2,U...]HRnw=0的情况下anc部分才有意义,因为anc只有在bm路和bf路的噪声存在相关情况下才能起到作用。

w为gev/mvdr下的bf和bm

一般的gsc架构的论文都是在ratio of transfer function下作为fix bf,以及以此为基础再进行bm和anc,这种架构的合理性在于bm路保证了阻塞语音(和语音阵正交),bm路和fix_beam路仍然存在噪声的相关(和噪声阵存在相关),anc具有存在的价值。然而在波束和BSS问题中的gevd 中已经讨论过,gev下的w及其构造出来的U满足 [ U 1 , U 2 , U . . . ] H R n w = 0 [U_1,U_2,U_...]^HR_nw=0 [U1,U2,U...]HRnw=0的关系,如果要实现对gev后结果的anc,需要满足gev后波束的噪声信号和bm路的噪声信号相关,这又和gev构造出来的bm相违背。可尝试的方向是bm部分通过其他方式获得。通过对anc的精准控制,如何不伤语音的实现对gev残留噪声的再滤波。如bm通过 U = I − a w H a H w , 其 中 a H w = 1 , w = a U=I-\frac{aw^H}{a^Hw},其中a^Hw=1,w=a U=IaHwawHaHw=1w=a来构造,这种情况下 [ U 1 , U 2 , U . . . ] H R n w g e v ≠ 0 [U_1,U_2,U_...]^HR_nw_{gev}\neq0 [U1,U2,U...]HRnwgev=0(这个推论下好像不对)。 当然这种情况下在gev已经实现一遍 m a x w H R s w w H R n w max\frac {w^HR_sw}{w^HR_nw} maxwHRnwwHRsw后能消多少噪声就另说了。

重新解释一下如上的画线部分, [ U 1 , U 2 , U . . . ] H R n w g e v = [ U 1 , U 2 , U . . . ] H R s w g e v = 0 [U_1,U_2,U_...]^HR_nw_{gev}=[U_1,U_2,U_...]^HR_sw_{gev}=0 [U1,U2,U...]HRnwgev=[U1,U2,U...]HRswgev=0恒成立,也就是在gev满足的情况下gev的波束输出噪声和任意的阻塞矩阵输出噪声正交。那么要滤除gev路的噪声只能通过mask控制(mask就看自己怎么想了),阻塞矩阵输出和波束路的语音和噪声都具有了相关性才能实现gev作为fixbeam情况下的anc滤波。也就是阻塞矩阵不阻塞的情况下做anc。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值