Storm 与Kafka 整合

这里的目标是kafka 负责生产数据,storm 消费数据并将结果输出

一、wurstmeister/storm-kafka-0.8-plus

这里用的是引进别人家写的整合代码,因为使用的人也比较多,下面是项目地址

https://github.com/wurstmeister/storm-kafka-0.8-plus

下载、解压以及将这个目录下的代码添加进项目

storm-kafka-0.8-plus-master\storm-kafka-0.8-plus-master\src\jvm

 

将kafka 和 storm 的JAR 添加进项目,作为依赖jar 包

然后添加com.netflix.curator 的相关包括client、framework和recipes

下载地址:http://maven.outofmemory.cn/com.netflix.curator/

最新的所有com.google.common类,下载地址

http://central.maven.org/maven2/com/google/guava/guava/18.0/guava-18.0.jar

 

这样storm-kafka-0.8-plus项目应该就不会报错了。

 

二、kafka 生产者的创建

在我的这篇文章里3.6、Producer JAVA API,有生产者的例子,可以拿来直接用。

http://blog.csdn.net/looklook5/article/details/41248561

 

三、创建消费 kafka 数据的Topology

storm-kafka-0.8-plus 给我们写了个测试代码

地址是:

https://github.com/wurstmeister/storm-kafka-0.8-plus-test/blob/master/src/main/java/storm/kafka/KafkaSpoutTestTopology.java

代码如下:

package storm.kafka;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.StormTopology;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Tuple;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Arrays;

public class KafkaSpoutTestTopology {
    public static final Logger LOG = LoggerFactory.getLogger(KafkaSpoutTestTopology.class);

    public static class PrinterBolt extends BaseBasicBolt {
        @Override
        public void declareOutputFields(OutputFieldsDeclarer declarer) {
        }

        @Override
        public void execute(Tuple tuple, BasicOutputCollector collector) {
            LOG.info(tuple.toString());
        }

    }

    private final BrokerHosts brokerHosts;

    public KafkaSpoutTestTopology(String kafkaZookeeper) {
        brokerHosts = new ZkHosts(kafkaZookeeper);
    }

    public StormTopology buildTopology() {
        SpoutConfig kafkaConfig = new SpoutConfig(brokerHosts, "storm-sentence", "", "storm");
        kafkaConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout("words", new KafkaSpout(kafkaConfig), 10);
        builder.setBolt("print", new PrinterBolt()).shuffleGrouping("words");
        return builder.createTopology();
    }

    public static void main(String[] args) throws Exception {

        String kafkaZk = args[0];
        KafkaSpoutTestTopology kafkaSpoutTestTopology = new KafkaSpoutTestTopology(kafkaZk);
        Config config = new Config();
        config.put(Config.TOPOLOGY_TRIDENT_BATCH_EMIT_INTERVAL_MILLIS, 2000);

        StormTopology stormTopology = kafkaSpoutTestTopology.buildTopology();
        if (args != null && args.length > 1) {
            String name = args[1];
            String dockerIp = args[2];
            config.setNumWorkers(2);
            config.setMaxTaskParallelism(5);
            config.put(Config.NIMBUS_HOST, dockerIp);
            config.put(Config.NIMBUS_THRIFT_PORT, 6627);
            config.put(Config.STORM_ZOOKEEPER_PORT, 2181);
            config.put(Config.STORM_ZOOKEEPER_SERVERS, Arrays.asList(dockerIp));
            StormSubmitter.submitTopology(name, config, stormTopology);
        } else {
            config.setNumWorkers(2);
            config.setMaxTaskParallelism(2);
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("kafka", config, stormTopology);
        }
    }
}

这里清晰的写出了创建一个与kafka整合的storm Topology,观察main 函数,从上往下看:

下面是关于zookeeper的设定以及spout和bolt 的设定

String kafkaZk = args[0];
KafkaSpoutTestTopology kafkaSpoutTestTopology = new KafkaSpoutTestTopology(kafkaZk);
StormTopology stormTopology = kafkaSpoutTestTopology.buildTopology();

下面的语句中,storm-sentence是话题,下面的语句是要求在zookeeper 服务器中在根目录创建文件夹storm,用于kafka存放zookeeper相关数据

SpoutConfig kafkaConfig = new SpoutConfig(brokerHosts, " storm-sentence ", "", "storm");
builder.setSpout("words", new KafkaSpout(kafkaConfig), 10); 这里是设定spout,负责从kafka消费数据,其中word 是spout 名称,KafkaSpout 由storm-kafka-0.8-plus 提供,10为并发数。
builder.setBolt("print", new PrinterBolt()).shuffleGrouping("words"); 这个是设定spout 接下去的bolt, PrinterBolt看名称应该负责打印bolt的数据的类。shuffleGrouping("words")表示数据是采用随机模式。后面接的数据来自与叫做words的spout

下面是设置Topology的相关设定

Config config = new Config(); 初始化一个storm设置
config.setNumWorkers(2);  这个代表分配2个Worker。
StormSubmitter.submitTopology(args[0], config, builder.createTopology()); 这个表示想Storm 服务器提交Topology任务,其中第一个参数是Topology的name.
config.setMaxTaskParallelism(3); 一个work的最大并发数为3
LocalCluster cluster = new LocalCluster(); 开启Storm本地模式 
cluster.submitTopology("special-topology", config, builder.createTopology());  在本地网模式下提交storm任务。	           	
cluster.shutdown(); 关闭Storm本地模式。

下面是我修改后的脚本

import com.google.common.collect.ImmutableList;
import com.ks.bolt.CounterBolt;
import com.ks.bolt.DateCutBolt;
import com.ks.bolt.InsertMysqlBolt;

import storm.kafka.BrokerHosts;
import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.topology.TopologyBuilder;
public class CountTopology {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		try{
			String kafkaZookeeper = "carl:2181,slave1:2181,slave2:2181";
			BrokerHosts brokerHosts = new ZkHosts(kafkaZookeeper);
			SpoutConfig kafkaConfig = new SpoutConfig(brokerHosts, "test", "/storm", "stormid");
	        kafkaConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
	        kafkaConfig.zkServers =  ImmutableList.of("carl","slave1","slave2");
	        kafkaConfig.zkPort = 2181;
			
	        //kafkaConfig.forceFromStart = true;
			
	        
	        TopologyBuilder builder = new TopologyBuilder();
	        builder.setSpout("spout", new KafkaSpout(kafkaConfig), 2);
	      //*************************下面是所有处理逻辑,只关注这个*****************************
	        builder.setBolt("datecut", new CounterBolt(),1).shuffleGrouping("spout");
	        //*************************下面是所有处理逻辑,只关注这个*****************************

	        Config config = new Config();
	        config.setDebug(true);
			
	        if(args!=null && args.length > 0) {
	            config.setNumWorkers(2);
	            
	            StormSubmitter.submitTopology(args[0], config, builder.createTopology());
	        } else {        
	            config.setMaxTaskParallelism(3);
	    
	            LocalCluster cluster = new LocalCluster();
	            cluster.submitTopology("special-topology", config, builder.createTopology());
	            
	            Thread.sleep(500000);
	
	            cluster.shutdown();
	        }
		}catch (Exception e) {
			e.printStackTrace();
		}
	}

}

这里在本地模式下让他运行20秒钟自动结束,因为这个比较耗资源。注意以下这句,

SpoutConfig kafkaConfig = new SpoutConfig(brokerHosts, "test", "/storm", "stormid");
请记得在zookeeper 根目录下面创建文件夹storm,然后在storm 文件夹下面继续创建文件夹stormid 用于存放kafka信息数据

上面的Topology 设定了bolt 为CounterBolt,因此还要建一个CounterBolt的bolt 类。

这里设定了,运行jar包敲参数为提交到storm服务器,不敲参数则是运行storm本地模式。

四、创建数据输出的Bolt

这里实现一个十分简单的bolt 类

import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Tuple;

public class CounterBolt extends BaseBasicBolt {

	/**
	 * 
	 */
	private static final long serialVersionUID = -5508421065181891596L;
	
	private static long counter = 0;
	
	@Override
	public void execute(Tuple tuple, BasicOutputCollector collector) {
		
		System.out.println("msg = "+tuple.getString(0)+" -------------counter = "+(counter++));

	}

	@Override
	public void declareOutputFields(OutputFieldsDeclarer declarer) {
		// TODO Auto-generated method stub

	}

}

这里很简单就是将bolt 获取的数据进行简单的输出,并统计接收到的数据条目数。这里继续BaseBasicBolt 类,因为这样开发会比较简单。因为这个是唯一的bolt,没有输出,因此在declareOutputFields 方法中不需要声明output。

 

System.out.println("msg = "+ tuple.getString(0)+"-------------counter = "+(counter++));

这里tuple就是这个bolt 从上一个spout获取的数据集合。

这里是控制台输出,因此请用本地模式进行调试。

 

打包上传到服务器,运行

Storm jar jarname CountTopology     回车,会看到他在等待数据传入。

这个时候运行kafka消费者程序,将数据输出,则会看到storm 会迅速输出数据和统计数目。

这里测试不写了。





评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值