推荐系统在现代互联网应用中扮演着重要的角色,帮助用户发现他们可能感兴趣的内容。深度学习技术在推荐系统领域取得了显著的突破,使得推荐系统能够更好地理解用户的兴趣和行为模式。在本文中,我们将探讨构建深度推荐系统的概览,并提供相应的源代码示例。
- 数据预处理
深度推荐系统的构建始于数据预处理阶段。在这个阶段,我们需要对原始数据进行清洗、转换和特征工程等操作,以便为模型提供高质量的输入数据。以下是一个简单的数据预处理示例:
# 导入必要的库
import pandas as pd
from sklearn.preprocessing import LabelEncoder
# 读取原始数据
data = pd.read_csv(