构建深度推荐系统:一个机器学习笔记

167 篇文章 30 订阅 ¥59.90 ¥99.00
本文探讨了如何使用深度学习构建推荐系统,从数据预处理、模型构建(如多层感知器、卷积神经网络、循环神经网络)到模型训练与评估,以及最终的个性化推荐,提供了一整套流程的概述和源代码示例。
摘要由CSDN通过智能技术生成

推荐系统在现代互联网应用中扮演着重要的角色,帮助用户发现他们可能感兴趣的内容。深度学习技术在推荐系统领域取得了显著的突破,使得推荐系统能够更好地理解用户的兴趣和行为模式。在本文中,我们将探讨构建深度推荐系统的概览,并提供相应的源代码示例。

  1. 数据预处理
    深度推荐系统的构建始于数据预处理阶段。在这个阶段,我们需要对原始数据进行清洗、转换和特征工程等操作,以便为模型提供高质量的输入数据。以下是一个简单的数据预处理示例:
# 导入必要的库
import pandas as pd
from sklearn.preprocessing import LabelEncoder

# 读取原始数据
data = pd.read_csv(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值