ResNet残差网络的PyTorch实现及BasicBlock残差块

167 篇文章 30 订阅 ¥59.90 ¥99.00
本文介绍了如何使用PyTorch实现ResNet残差网络,重点讲解了ResNet中的BasicBlock残差块。BasicBlock包含两个卷积层和批归一化层,通过残差连接解决深层网络训练中的梯度问题。文章详细阐述了BasicBlock的结构,包括通道数的扩展和输入输出尺寸的调整,并展示了ResNet的整体构建过程。
摘要由CSDN通过智能技术生成

残差网络(Residual Network)是深度学习中一种非常流行的架构,它通过引入残差连接(residual connection)来解决深层网络训练过程中的梯度消失和梯度爆炸问题。在本文中,我们将使用PyTorch实现ResNet残差网络,并详细介绍其中的BasicBlock残差块。

首先,我们需要导入PyTorch库和相关的模块:

import torch
import torch.nn as nn
import torch.nn.functional as F

接下来,我们定义一个BasicBlock类,它是ResNet中的基本残差块。BasicBlock由两个卷积层组成,每个卷积层后面跟着一个批归一化(Batch Normalization)层。在卷

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值