使用NumPy实现K-Means聚类算法

167 篇文章 30 订阅 ¥59.90 ¥99.00
本文介绍了如何使用Python的NumPy库实现K-Means聚类算法,包括初始化质心、分配数据点、更新质心等步骤,并提供了相应的源代码。通过NumPy的向量化操作,可以高效处理大规模数据集,实现有效的无监督学习聚类。
摘要由CSDN通过智能技术生成

K-Means聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。在本文中,我们将使用Python中的NumPy库来实现K-Means聚类算法,并提供相应的源代码。

K-Means算法的基本思想是通过迭代的方式将数据点分配到最近的质心(簇中心),然后更新质心的位置。这个过程会不断迭代,直到质心的位置不再改变或达到预定的迭代次数。下面是使用NumPy实现K-Means算法的步骤:

  1. 初始化质心:从数据集中随机选择K个数据点作为初始质心。

  2. 分配数据点:对于每个数据点,计算它与所有质心之间的距离,并将其分配到距离最近的质心所对应的簇。

  3. 更新质心:对于每个簇,计算该簇中所有数据点的均值,将均值作为新的质心位置。

  4. 重复步骤2和3,直到质心的位置不再改变或达到预定的迭代次数。

下面是使用NumPy实现K-Means聚类算法的Python代码:

import numpy as np

def k
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值