K-Means聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。在本文中,我们将使用Python中的NumPy库来实现K-Means聚类算法,并提供相应的源代码。
K-Means算法的基本思想是通过迭代的方式将数据点分配到最近的质心(簇中心),然后更新质心的位置。这个过程会不断迭代,直到质心的位置不再改变或达到预定的迭代次数。下面是使用NumPy实现K-Means算法的步骤:
-
初始化质心:从数据集中随机选择K个数据点作为初始质心。
-
分配数据点:对于每个数据点,计算它与所有质心之间的距离,并将其分配到距离最近的质心所对应的簇。
-
更新质心:对于每个簇,计算该簇中所有数据点的均值,将均值作为新的质心位置。
-
重复步骤2和3,直到质心的位置不再改变或达到预定的迭代次数。
下面是使用NumPy实现K-Means聚类算法的Python代码:
import numpy as np
def k