invalid argument "type=bind,source=/tmp/tfserving/serving/tensorflow_serving

31 篇文章 0 订阅
3 篇文章 0 订阅
本文解决了一个常见的TensorFlow Serving Docker部署问题,即找不到libcuda.so库导致的错误。通过调整Docker运行指令,移除斜杠并正确指定挂载路径,成功启动了TensorFlow Serving GPU容器。
摘要由CSDN通过智能技术生成

今天在测试Tensorflow Serving Docker 的代码,前面一直是报错,说找不到libcuda.so

 libcuda reported version is: Not found: was unable to find libcuda.so
  DSO loaded into this program

查询了很多解决方案,发现需要dockerfile 立执行 参考链接

run rm /usr/local/cuda/lib64/stubs/libcuda.so.1 fixed my problem

但是这个涉及到了DockerFile,然后我想看看能不能从根本解决这个问题,我们原来使用 TF1.9 gpu,现在使用latest的docker,然后用tensorflow serving Docker的官方代码测试Tensorflow

执行代码

docker run --runtime=nvidia -p 8501:8501 \
  --mount type=bind,\ source=/tmp/tfserving/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_gpu,\
  target=/models/half_plus_two \
  -e MODEL_NAME=half_plus_two -t tensorflow/serving:latest-gpu &

但是还是会报错

invalid argument "type=bind,source=/tmp/tfserving/serving/tensorflow_serving/
servables/tensorflow/testdata/saved_model_half_plus_two_cpu," 
for "--mount" flag: invalid field '' must be a key=value pair

参考这位同学的答案,原来是指令会报错的原因是里面有空格,最后我把斜杠全部去掉就可以了

docker run --runtime=nvidia -p 8501:8501 --mount type=bind,source=/tmp/tfserving/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_gpu,target=/models/half_plus_two -e MODEL_NAME=half_plus_two -t tensorflow/serving:latest-gpu

这样就正常启动了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值