题目描述
一个长度为n+m+k包含n个数字1,m个数字2和k个数字4的数组,最多可能有多少个子序列1412?
如果一个序列是数组的子序列,当且仅当这个序列可以由数组删去任意个元素,再将数组中的剩余元素按顺序排列而成。
输入描述:
第一行一个整数t,表示测试用例的组数。
接下来{t}t行每行三个整数n,m,k表示一组测试用例。
输出描述:
对于每组测试用例输出一行一个整数表示答案。
示例1
输入
3
6 7 8
1 2 2
6 0 3
输出
504
0
0
备注:
{1<=t<=200000}1<=t<=200000
{0<=n,m,k<=10000}0<=n,m,k<=10000
题目分析
十年OJ一场空,不开long long见祖宗
全都long long,防止中间值过大,题目原来给的是0<=n,m,k<=200000,这样一来就恐怖了,解决办法后面再提
首先就是表达式,最大可能性=(n-n/2) * m * k * (n/2)
如果是原数据范围,那么最大值200000 * 200000 * 100000 * 100000,超过了long long的数据范围,就要用高精度乘法了
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
void big(ll x,ll y)
{
int a[12],b[12];
int ans[25];
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(ans,0,sizeof(ans));
int ha=0;
int hb=0;
while(x!=0)
{
a[ha++]=x%10;
x/=10;
}
while(y!=0)
{
b[hb++]=y%10;
y/=10;
}
for(int i=0;i<hb;i++)
{
int jinwei=0;
for(int j=0;j<=ha-1;j++)
{
ans[j+i]+=(a[j]*b[i]+jinwei);
jinwei=ans[j+i]/10;
ans[j+i]%=10;
}
ans[i+ha]=jinwei;
}
int flag=0;
for(int i=ha+hb;i>=0;i--)
{
if(ans[i]!=0)
flag=1;
if(flag==1)
printf("%d",ans[i]);
}
if(flag==0)
printf("0");
cout<<endl;
}
int main()
{
int t;
cin>>t;
ll n,m,k;
while(t--)
{
scanf("%lld%lld%lld",&n,&m,&k);
big(m*(n/2),(n-n/2)*k);
}
return 0;
}