DFS
DFS原理:递归
DFS思想:不撞南墙不回头
DFS例题:走迷宫,全排列(等)
DFS延伸:记录路径,剪枝
模板
void DFS(int x,int y)
{
if(满足所需要的条件) { 相应的操作;return;}
else{
for(int i= ; ;) //如果是方向的话,会枚举方向
{
枚举加方向的新坐标;
if(界限 :例如:不能出到地图外,有障碍,已经访问过) continue;
设置已经访问新坐标;
DFS(新坐标);
恢复到未被访问;
}
}
}
例题
问题描述
抗日战争时期,冀中平原的地道战曾发挥重要作用。
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数DF(x,y):
对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数
输入
输入数据第一行包含2个整数n(2 < = n < = 1000), m(0 < = m < = 2000),分别代表站点数,通道数;
接下来m行,每行两个整数 u,v (1 < = u, v < = n; u != v)代表一条通道;
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。
输出
一个整数,如果询问的两点不连通则输出-1.
样例输入
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
样例输出
2
#include<iostream>
#include<queue>
#include<utility>
#define L 2500
using namespace std;
int n,m;
int u,v;
int g[L][L];
queue<int> keep;
int vis[L];
int flag;
void dfs(int point)
{
if(point==v)
{
flag=1;
return ; //剪枝
}
for(int i=1;i<=n;i++)
if(vis[i]==0&&g[point][i])
{
vis[i]=1;
dfs(i);
vis[i]=0;
if(flag) //配合上述剪枝
return ;
}
return ;
}
int main()
{
cin>>n>>m;
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
g[a][b]=g[b][a]=1;
}
cin>>u>>v;
vis[u]=1;
int cnt=0;
for(int i=1;i<=n;i++)
{
if(i==u||i==v)
continue;
for(int j=1;j<=n;j++)
if(g[i][j])
{
g[i][j]=g[j][i]=0;
keep.push(j);
}
flag=0;
dfs(u);
if(flag==0)
cnt++;
while(keep.size())
{
g[i][keep.front()]=g[keep.front()][i]=1;
keep.pop();
}
}
cout<<cnt<<endl;
}