蓝桥杯算法整理第一节 深度优先搜索

DFS

DFS原理:递归
DFS思想:不撞南墙不回头
DFS例题:走迷宫,全排列(等)
DFS延伸:记录路径,剪枝

模板

void DFS(int x,int y)
{
     if(满足所需要的条件)   {  相应的操作;return}
    else{
            for(int i= ; ;) //如果是方向的话,会枚举方向
            {
                  枚举加方向的新坐标;
                  if(界限 :例如:不能出到地图外,有障碍,已经访问过) continue;
                   设置已经访问新坐标;
                    DFS(新坐标); 
                   恢复到未被访问;
            }

       }
}

例题

问题描述
抗日战争时期,冀中平原的地道战曾发挥重要作用。
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数DF(x,y):
对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数

输入
输入数据第一行包含2个整数n(2 < = n < = 1000), m(0 < = m < = 2000),分别代表站点数,通道数;
接下来m行,每行两个整数 u,v (1 < = u, v < = n; u != v)代表一条通道;
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。
输出
一个整数,如果询问的两点不连通则输出-1.
样例输入
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
样例输出
2

#include<iostream>
#include<queue> 
#include<utility>
#define L 2500
using namespace std;
int n,m;
int u,v;
int g[L][L];
queue<int> keep;
int vis[L];
int flag;
void dfs(int point)
{
	if(point==v)
	{
		flag=1;
		return ;  //剪枝
	}
	for(int i=1;i<=n;i++)
		if(vis[i]==0&&g[point][i])
		{
			vis[i]=1;
			dfs(i);
			vis[i]=0;
			if(flag)   //配合上述剪枝
				return ;
		}
	return ;
}
int main()
{
	cin>>n>>m;
	for(int i=0;i<m;i++)
	{
		int a,b;
		cin>>a>>b;
		g[a][b]=g[b][a]=1;
	}
	cin>>u>>v;
	vis[u]=1;
	int cnt=0;
	for(int i=1;i<=n;i++)
	{
		if(i==u||i==v)
			continue;
		for(int j=1;j<=n;j++)
			if(g[i][j])
			{
				g[i][j]=g[j][i]=0;
				keep.push(j);
			}
		flag=0;
		dfs(u);
		if(flag==0)
			cnt++;	
		while(keep.size())
		{
			g[i][keep.front()]=g[keep.front()][i]=1;
			keep.pop();
		}
	}
	cout<<cnt<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值