题目描述
小明对搭积木非常感兴趣。他的积木都是同样大小的正立方体。
在搭积木时,小明选取 m 块积木作为地基,将他们在桌子上一字排开,中间不留空隙,并称其为第0层。
随后,小明可以在上面摆放第1层,第2层,……,最多摆放至第n层。摆放积木必须遵循三条规则:
规则1:每块积木必须紧挨着放置在某一块积木的正上方,与其下一层的积木对齐;
规则2:同一层中的积木必须连续摆放,中间不能留有空隙;
规则3:小明不喜欢的位置不能放置积木。
其中,小明不喜欢的位置都被标在了图纸上。图纸共有n行,从下至上的每一行分别对应积木的第1层至第n层。每一行都有m个字符,字符可能是‘.’或‘X’,其中‘X’表示这个位置是小明不喜欢的。
现在,小明想要知道,共有多少种放置积木的方案。他找到了参加蓝桥杯的你来帮他计算这个答案。
由于这个答案可能很大,你只需要回答这个答案对1000000007(十亿零七)取模后的结果。
注意:地基上什么都不放,也算作是方案之一种。
【输入格式】
输入数据的第一行有两个正整数n和m,表示图纸的大小。
随后n行,每行有m个字符,用来描述图纸 。每个字符只可能是‘.’或‘X’。
【输出格式】
输出一个整数,表示答案对1000000007取模后的结果。
【样例输入1】
2 3
…X
.X.
【样例输出1】
4
【样例说明1】
成功的摆放有(其中O表示放置积木):
(1)
…X
.X.
(2)
…X
OX.
(3)
O.X
OX.
(4)
…X
.XO
【样例输入2】
3 3
…X
.X.
…
【样例输出2】
16
【数据规模约定】
对于10%的数据,n=1,m<=30;
对于40%的数据,n<=10,m<=30;
对于100%的数据,n<=100,m<=100。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
思路
一看就想用状压DP的,但是发现好像只能过40%,因为100位的二进制数会超long long 然后发现暴力DP判断状态要100的100次方复杂度直接劝退(想骗分的话直接上状压DP是可以的)所以看了一会儿发现规律。
我们得到的结果肯定是一条一条的柱子拼在一起,同时要求不能存在高低高的现象。所以我们开一个DP【k】【l】【h】,
储存着第 0 列到第 l 列,第 l 列堆到h高度的情况下,k=0是递减,k=1是递增的情况数
递减递增很好写出状态转移方程,但是先递减再递增怎么写,其实就是在递推递减时,前一个递增的也加进去,这样每一次列于列之间递推都能记录下以不同列为递增递减转换点出现的方案数。
代码
#include<iostream>
#include<cstring>
#define mod 1000000007
using namespace std;
typedef long long ll;
char mp[101];
int h[101];
int n,m;
int dp[2][110][110];
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
{
scanf("%s",mp);
for(int j=0;j<m;j++)
if(mp[j]=='X')
h[j]=i+1;
}
for(int i=0;i<m;i++) //把每一列限制算出来
h[i]=n-h[i];
for(int i=0;i<=h[0];i++) //第一列初始化
dp[1][0][i]=1;
for(int i=1;i<m;i++)
for(int j=0;j<=h[i];j++)
{
int d=min(h[i-1],j);
for(int k=0;k<=d;k++)
dp[1][i][j]=(dp[1][i][j]+dp[1][i-1][k])%mod;
for(int k=j+1;k<=h[i-1];k++)
{
dp[0][i][j]=(dp[0][i][j]+dp[1][i-1][k])%mod;
dp[0][i][j]=(dp[0][i][j]+dp[0][i-1][k])%mod;
}
if(j<=h[i-1])
dp[0][i][j]=(dp[0][i][j]+dp[0][i-1][j])%mod;
}
int ans=0;
for(int i=0;i<=h[m-1];i++)
ans=((ans+dp[0][m-1][i])%mod+dp[1][m-1][i])%mod;
printf("%d",ans);
}