快速排序
快速排序是大家已知的常用排序算法中最快的排序方法。
原理
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先任取数据a[x]作为基准。比较a[x]与其它数据并排序,使a[x]排在数据的第k位,并且使a[1]a[k-1]中的每一个数据<a[x],a[k+1]a[n]中的每一个数据>a[x],然后采用分治的策略分别对a[1]a[k-1]和a[k+1]a[n]两组数据进行快速排序。
JAVA程序
//化分区间,找到最后元素的排序位置。并返回分隔的点(即最后一数据排序的位置)。
//划分的区间是[nBegin, nEnd). pData是保存数据的指针
static int Partition(int[] pData, int nBeging, int nEnd)
{
int i = nBeging - 1; //分隔符号,最后nD保存在这里
–nEnd;
int nD = pData[nEnd]; //比较的数据。
int nTemp; // 交换用的临时数据
//遍历数据比较,找到nD的位置,这里注意,比较结果是,
//如果i的左边是小于等于nD的,i的右边是大于nD的
for (int j = nBeging; j < nEnd; ++j)
{
if (pData[j] <= nD) //如果数据比要比较的小,则在该数据的左边,与i+1交换
{
++i; //小于nD的数据多一个,所以要加1,i的左边数据都比nD小
nTemp = pData[i]; //交换数据
pData[i] = pData[j];
pData[j] = nTemp;
}
}
//最后不要忘了吧nD和i+1交换,因为这里就是nD的位置咯。
++i;
pData[nEnd] = pData[i];
pData[i] = nD;
return i; //返回nD的位置,就是分割的位置。
}
//排序的递归调用。
static int QuickSortRecursion(int[] pData, int nBeging, int nEnd)
{
if (nBeging >= nEnd -1) //如果区域不存在或只有一个数据则不递归排序
{
return 1;
}
//这里因为分割的时候,分割点处的数据就是排序中他的位置。
//也就是说他的左边的数据都小于等于他,他右边的数据都大于他。
//所以他不在递归调用的数据中。
int i = Partition(pData, nBeging, nEnd); //找到分割点
QuickSortRecursion(pData, nBeging, i); //递归左边的排序
QuickSortRecursion(pData, i + 1, nEnd); //递归右边的排序
return 1;
}
//快速排序
public static int QuickSort(int[] pData, int nLen)
{
//递归调用,快速排序。
QuickSortRecursion(pData, 0, nLen);
return 1;
}
优劣
优点:极快,数据移动少。
缺点:不稳定。
归并排序编辑
原理
归并排序是多次将两个或两个以上的有序表合并成一个新的有序表。最简单的归并是直接将两个有序的子表合并成一个有序的表。
归并排序是稳定的排序.即相等的元素的顺序不会改变。如输入记录 1(1) 3(2) 2(3) 2(4) 5(5) (括号中是记录的关键字)时输出的 1(1) 2(3) 2(4) 3(2) 5(5) 中的2 和 2 是按输入的顺序,这对要排序数据包含多个信息而要按其中的某一个信息排序,要求其它信息尽量按输入的顺序排列时很重要,这也是它比快速排序优势的地方。
树型排序
原理
树形选择排序又称锦标赛排序(Tournament Sort),是一种按照锦标赛的思想进行选择排序的方法。首先对n个记录的关键字进行两两比较,然后在n/2个较小者之间再进行两两比较,如此重复,直至选出最小的记录为止。树形排序的要素就是让所有的左子树都比根及右子树大。
优劣
优点:效率高。
缺点:不稳定。