MILP 算法在 ARX 密码分析及 Speck 密码中的应用
1. 引言
在密码学领域,差分特征和线性逼近的自动搜索算法对于分析密码的安全性至关重要。本文将介绍基于混合整数线性规划(MILP)的自动搜索算法,用于寻找 ARX 密码的差分特征和线性逼近,并将其应用于 Speck 密码。
2. 差分特征的 MILP 模型
2.1 模加运算的差分特征
对于差分 $(α, β → γ)$,其概率 $xdp+$ 可以高效计算。例如,对于差分 $(11100, 00110 → 10110)$,概率 $xdp+(α, β → γ)=2^{-(¬eq(0,0,0)+¬eq(0,1,1)+¬Eq(1,1,1)+¬Eq(1,0,0))}= 2^{-2}$。
为了将定理 1 中的第一个条件 $α[0] ⊕ β[0] ⊕ γ[0] = 0$ 加入线性不等式集合,我们推导出以下五个线性不等式:
[
\begin{cases}
d_⊕ \geq α[0] \
d_⊕ \geq β[0] \
d_⊕ \geq γ[0] \
α[0] + β[0] + γ[0] - 2d_⊕ \geq 0 \
α[0] + β[0] + γ[0] \leq 2
\end{cases}
]
其中 $d_⊕$ 是一个虚拟位变量。
向量 $(α[i], β[i], γ[i], α[i + 1], β[i + 1], γ[i + 1])$ 表示第 $i$ 位和第 $i + 1$ 位的差分关系,根据定理 1,该向量共有 56 种可能的模式。为了高效计算差分概率,我们将
超级会员免费看
订阅专栏 解锁全文
5005

被折叠的 条评论
为什么被折叠?



