混合整数线性规划 (MILP) 算法

本文介绍了混合整数线性规划 (MILP) 的定义及其算法,包括intlinprog算法的概述、线性规划预处理、混合整数规划预处理、切割生成、启发式方法和分支定界等步骤,阐述了如何逐步解决MILP问题。
摘要由CSDN通过智能技术生成

混合整数线性规划 (MILP) 算法

混合整数线性规划定义

混合整数线性规划 (MILP) 问题具有以下要素:

  • 线性目标函数 fTx,其中 f 是由常数组成的列向量,x 是由未知数组成的列向量

  • 边界和线性约束,但没有非线性约束(有关定义,请参阅编写约束

  • 对 x 的某些分量的限制,使其必须具有整数值

        以数学语言表达,即根据向量 f、lb 和 ub,矩阵 A 和 Aeq,对应的向量 b 和 beq,以及索引集 intcon,求解向量 x 使下式成立

intlinprog 算法

算法概述

  intlinprog 使用此基本策略来求解混合整数线性规划intlinprog 可以在任一阶段完成问题的求解。如果它在某个阶段成功求解了问题,intlinprog 不会执行后面的阶段。

  1. 使用线性规划预处理缩减问题的规模。

  2. 使用线性规划求解初始松弛(非整数)问题。

  3. 执行混合整数规划预处理以收紧混合整数问题的 LP 松弛。

  4. 尝试切割生成以进一步收紧混合整数问题的 LP 松弛。

  5. 尝试使用启发式方法求得整数可行解。

  6. 使用分支定界算法系统地搜索最优解。此算法通过限制整数变量的可能值范围来求解 LP 松弛问题。它尝试在最优目标函数值上生成一系列更新边界。

线性规划预处理

根据混合整数线性规划定义,矩阵 A 和 Aeq 以及对应的向量 b 和 beq 以如下形式编写一组线性不等式和线性等式

A · xAeq · x≤b=be

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资源存储库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值