基于MILP的Speck差分和线性轨迹自动搜索算法
1. 引言
差分攻击和线性攻击是最基本的密码分析方法,已被用于众多对称密码的分析。自动搜索差分特征和线性逼近一直是密码学家关注的焦点。例如,在EUROCRYPT’94上,Matsui提出了分支限界搜索算法,找到了DES分组密码的差分特征和线性逼近,该算法至今仍被广泛使用。
混合整数线性规划(MILP)已被明确应用于构造差分和线性密码分析中的自动搜索算法。Mouha等人和Wu等人将计算差分活动S盒最小数量的问题转化为MILP问题,可使用开源或商用MILP求解器自动求解。近年来,基于MILP的方法已发展成为自动搜索真实差分特征的通用方法。Sun等人构建了基于MILP的模型来搜索(相关密钥)差分特征,但他们的搜索算法是启发式的,识别出的差分特征可能不一致。后来,他们通过贪心算法将启发式搜索方法转化为精确实用的搜索方法,并构建了自动搜索线性逼近的MILP模型,还将这些模型扩展到搜索差分和线性包。
由于基于ARX操作的密码在软件中表现出色,许多对称密钥密码基于ARX操作设计。然而,ARX密码的密码分析技术与具有S盒的密码(如AES和DES)有很大不同。现有的基于MILP的搜索算法无法应用于ARX分组密码,这促使我们研究基于MILP的ARX分组密码搜索方法。
1.1 我们的贡献
我们重新研究了模加的差分性质和线性性质,提供了构建MILP模型的新框架。具体来说,我们将模加的差分性质转化为线性不等式,以描述所有可能的差分模式和相应的差分概率。同时,基于模加相关性的自动机算法,使用线性不等式捕捉所有可能的线性模式和相应的相关性。得到的线性不等式数量明显少于将模加视为一个S盒所产生的线性不等式数量。 </
超级会员免费看
订阅专栏 解锁全文
60

被折叠的 条评论
为什么被折叠?



