31、基于MILP的Speck差分和线性轨迹自动搜索算法

基于MILP的Speck差分和线性轨迹自动搜索算法

1. 引言

差分攻击和线性攻击是最基本的密码分析方法,已被用于众多对称密码的分析。自动搜索差分特征和线性逼近一直是密码学家关注的焦点。例如,在EUROCRYPT’94上,Matsui提出了分支限界搜索算法,找到了DES分组密码的差分特征和线性逼近,该算法至今仍被广泛使用。

混合整数线性规划(MILP)已被明确应用于构造差分和线性密码分析中的自动搜索算法。Mouha等人和Wu等人将计算差分活动S盒最小数量的问题转化为MILP问题,可使用开源或商用MILP求解器自动求解。近年来,基于MILP的方法已发展成为自动搜索真实差分特征的通用方法。Sun等人构建了基于MILP的模型来搜索(相关密钥)差分特征,但他们的搜索算法是启发式的,识别出的差分特征可能不一致。后来,他们通过贪心算法将启发式搜索方法转化为精确实用的搜索方法,并构建了自动搜索线性逼近的MILP模型,还将这些模型扩展到搜索差分和线性包。

由于基于ARX操作的密码在软件中表现出色,许多对称密钥密码基于ARX操作设计。然而,ARX密码的密码分析技术与具有S盒的密码(如AES和DES)有很大不同。现有的基于MILP的搜索算法无法应用于ARX分组密码,这促使我们研究基于MILP的ARX分组密码搜索方法。

1.1 我们的贡献

我们重新研究了模加的差分性质和线性性质,提供了构建MILP模型的新框架。具体来说,我们将模加的差分性质转化为线性不等式,以描述所有可能的差分模式和相应的差分概率。同时,基于模加相关性的自动机算法,使用线性不等式捕捉所有可能的线性模式和相应的相关性。得到的线性不等式数量明显少于将模加视为一个S盒所产生的线性不等式数量。 </

内容概要:本文为《科技类企业品牌传播白皮书》,系统阐述了新闻媒体发稿、自媒体博主种草与短视频矩阵覆盖三大核心传播策略,并结合“传声港”平台的AI工具与资源整合能力,提出适配科技企业的品牌传播解决方案。文章深入分析科技企业传播的特殊性,包括受众圈层化、技术复杂性与传播通俗性的矛盾、产品生命周期影响及2024-2025年传播新趋势,强调从“技术输出”向“价值引领”的战略升级。针对三种传播方式,分别从适用场景、操作流程、效果评估、成本效益、风险防控等方面提供详尽指南,并通过平台AI能力实现资源智能匹配、内容精准投放与全链路效果追踪,最终构建“信任—种草—曝光”三位一体的传播闭环。; 适合人群:科技类企业品牌与市场负责人、公关传播从业者、数字营销管理者及初创科技公司创始人;具备一定品牌传播基础,关注效果可量化与AI工具赋能的专业人士。; 使用场景及目标:①制定科技产品全生命周期的品牌传播策略;②优化媒体发稿、KOL合作与短视频运营的资源配置与ROI;③借助AI平台实现传播内容的精准触达、效果监测与风险控制;④提升品牌在技术可信度、用户信任与市场影响力方面的综合竞争力。; 阅读建议:建议结合传声港平台的实际工具模块(如AI选媒、达人匹配、数据驾驶舱)进行对照阅读,重点关注各阶段的标准化流程与数据指标基准,将理论策略与平台实操深度融合,推动品牌传播从经验驱动转向数据与工具双驱动。
【3D应力敏感度分析拓扑优化】【基于p-范数全局应力衡量的3D敏感度分析】基于伴随方法的有限元分析p-范数应力敏感度分析(Matlab代码实现)内容概要:本文档围绕“基于p-范数全局应力衡量的3D应力敏感度分析”展开,介绍了一种结合伴随方法与有限元分析的拓扑优化技术,重点实现了3D结构在应力约束下的敏感度分析。文中详细阐述了p-范数应力聚合方法的理论基础及其在避免局部应力过高的优势,并通过Matlab代码实现完整的数值仿真流程,涵盖有限元建模、灵敏度计算、优化迭代等关键环节,适用于复杂三维结构的轻量化与高强度设计。; 适合人群:具备有限元分析基础、拓扑优化背景及Matlab编程能力的研究生、科研人员或从事结构设计的工程技术人员,尤其适合致力于力学仿真与优化算法开发的专业人士; 使用场景及目标:①应用于航空航天、机械制造、土木工程等领域中对结构强度重量有高要求的设计优化;②帮助读者深入理解伴随法在应力约束优化中的应用,掌握p-范数法处理全局应力约束的技术细节;③为科研复现、论文写作及工程项目提供可运行的Matlab代码参考与算法验证平台; 阅读建议:建议读者结合文中提到的优化算法原理与Matlab代码同步调试,重点关注敏感度推导与有限元实现的衔接部分,同时推荐使用提供的网盘资源获取完整代码与测试案例,以提升学习效率与实践效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值