如果一个图是二分图,那么它的最大独立集就是多项式时间可以解决的问题了 |最大独立集| = |V|-|最大匹配数|
证明:
设最大独立集数为U,最大匹配数为M,M覆盖的顶点集合为EM。
为了证明|U|=|V|-|M|,我们分两步证明|U|<=|V|-|M|和|U|>=|V|-|M|
1 .先证明 |U|<=|V|-|M|
M中的两个端点是连接的,所有M中必有一个点不在|U|集合中,所以|M|<=|V|-|U|
2. 再证明|U|>=|V|-|M|
假设(x,y)属于M
首先我们知道一定有|U|>=|V|-|EM|,那么我们将M集合中的一个端点放入U中可以吗?
假设存在(a,x),(b,y),(a,b)不在EM集合中
如果(a,b)连接,则有一个更大的匹配存在,矛盾
如果(a,b)不连接,a->x->y->b有一个新的增广路,因此有一个更大的匹配,矛盾
所以我们可以了解到取M中的一个端点放入U中肯定不会和U中的任何一个点相连,所以|U|>=|V|-|EM|+|M|=|V|-|M|
所以,|U|=|V|-|M|
二分图的最大独立集
最新推荐文章于 2021-11-07 10:16:50 发布