numpy模块
做矩阵数据分析时所需要用到的模块
是一个第三方的模块 pip install numpy
-
在python使用numpy创建一个矩阵
import numpy as np list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]] array1 = np.array(list1) print(array1, type(array1))
注意:如果列表中的小列表的列数不一致,那么就会将每一个小列表当作一个矩阵中的元素去存放,这个矩阵只有一行。
numpy是什么
Numpy(Numerical Python) 是科学计算基础库,提供大量科学计算相关功能,比如数据统计,随机数生成等。其提供最核心类型为多维数组类型(ndarray),支持大量的维度数组与矩阵运算,
Numpy支持向量处理ndarray对象,提高程序运算速度。
矩阵的常见属性
-
ndim 查看矩阵的维度
import numpy as np list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]] array1 = np.array(list1) print(array1, type(array1)) print(array1.ndim) # 2
-
shape 查看矩阵的行数和列数
import numpy as np list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]] array1 = np.array(list1) print(array1, type(array1)) print(array1.shape) # (3, 4)
-
size 查看矩阵中元素的个数
import numpy as np list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]] array1 = np.array(list1) print(array1, type(array1)) print(array1.size) # 12
-
dtype 查看矩阵中的元素类型
import numpy as np list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]] array1 = np.array(list1) print(array1, type(array1)) print(array1.dtype) # int32
numpy中矩阵的使用和常用函数
-
numpy 可以使用采用索引进行取值 array1[行的范围, 列的范围]
import numpy as np list1 = [[1, 2, 3, 4], [4, 5, 6, 8], [7, 8, 9, 3]] array1 = np.array(list1) print(array1, type(array1)) print("--------------------") print(array1[:, :2]) print("--------------------") print(array1[1, 1:3])
-
astype 将元素转成对应的数据类型
import numpy as np list1 = [[1, 2, 3, 4], [4, 5, 6, 8], [7, 8, 9, 3]] array1 = np.array(list1) print(array1, type(array1)) print(array1.dtype) print("--------------------") array1 = array1.astype('float') print(array1, type(array1)) print(array1.dtype)
-
split 按照指定的方向将矩阵切分
axis: 默认是0,按照行的方向切分,可以修改为1,按照列进行切分
import numpy as np
list1 = [[1, 2, 3, 4], [4, 5, 6, 8], [7, 8, 9, 3], [11,22,33,44]]
array1 = np.array(list1)
print(array1, type(array1))
print(array1.dtype)
print("--------------------")
res1 =np.split(array1,2, axis=1)
print(res1, type(res1))
指定索引切分若干个部分矩阵
res1 = np.split(array1, [1, -1])
- reshape 重构矩阵
需要注意:结果矩阵的元素个数和原本的元素个数保持一致
array1 = array1.reshape(4,3)
print(array1)
-
vstack 将两个矩阵上下拼接
-
hstack 将两个矩阵左右拼接
-
dot() 点乘
print(array1.dot(array2))
- diff() 差分
res1 = np.diff(array1,axis=1)
print(res1, type(res1))
- 数学计算
print(np.amax(array1))
print(np.amin(array1))
print(np.mean(array1)) # 平均值
print(np.median(array1)) # 中位数
print(np.std(array1)) # 2.48327740429189 标准差
print(np.var(array1)) # 6.166666666666667 方差 比如计算偏科这样的需求