numpy模块

numpy模块

做矩阵数据分析时所需要用到的模块

是一个第三方的模块 pip install numpy

  • 在python使用numpy创建一个矩阵

    import numpy as np
    
    list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]]
    
    array1 = np.array(list1)
    print(array1, type(array1))
    

注意:如果列表中的小列表的列数不一致,那么就会将每一个小列表当作一个矩阵中的元素去存放,这个矩阵只有一行。

numpy是什么

Numpy(Numerical Python) 是科学计算基础库,提供大量科学计算相关功能,比如数据统计,随机数生成等。其提供最核心类型为多维数组类型(ndarray),支持大量的维度数组与矩阵运算,
Numpy支持向量处理ndarray对象,提高程序运算速度。

在这里插入图片描述

矩阵的常见属性

  • ndim 查看矩阵的维度

    import numpy as np
    
    list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]]
    
    array1 = np.array(list1)
    print(array1, type(array1))
    
    print(array1.ndim) # 2
    
  • shape 查看矩阵的行数和列数

    import numpy as np
    
    list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]]
    
    array1 = np.array(list1)
    print(array1, type(array1))
    
    print(array1.shape) # (3, 4)
    
  • size 查看矩阵中元素的个数

    import numpy as np
    
    list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]]
    
    array1 = np.array(list1)
    print(array1, type(array1))
    
    print(array1.size) # 12
    
  • dtype 查看矩阵中的元素类型

    import numpy as np
    
    list1 = [[1,2,3,4],[4,5,6,8],[7,8,9,3]]
    
    array1 = np.array(list1)
    print(array1, type(array1))
    
    print(array1.dtype) # int32
    

numpy中矩阵的使用和常用函数

  • numpy 可以使用采用索引进行取值 array1[行的范围, 列的范围]

    import numpy as np
    
    list1 = [[1, 2, 3, 4], [4, 5, 6, 8], [7, 8, 9, 3]]
    
    array1 = np.array(list1)
    print(array1, type(array1))
    print("--------------------")
    print(array1[:, :2])
    print("--------------------")
    print(array1[1, 1:3])
    
  • astype 将元素转成对应的数据类型

    import numpy as np
    
    list1 = [[1, 2, 3, 4], [4, 5, 6, 8], [7, 8, 9, 3]]
    
    array1 = np.array(list1)
    print(array1, type(array1))
    print(array1.dtype)
    print("--------------------")
    array1 = array1.astype('float')
    print(array1, type(array1))
    print(array1.dtype)
    
  • split 按照指定的方向将矩阵切分

axis: 默认是0,按照的方向切分,可以修改为1,按照进行切分

import numpy as np

list1 = [[1, 2, 3, 4], [4, 5, 6, 8], [7, 8, 9, 3], [11,22,33,44]]

array1 = np.array(list1)
print(array1, type(array1))
print(array1.dtype)
print("--------------------")
res1 =np.split(array1,2, axis=1)
print(res1, type(res1))

指定索引切分若干个部分矩阵

res1 = np.split(array1, [1, -1])
  • reshape 重构矩阵

需要注意:结果矩阵的元素个数和原本的元素个数保持一致

array1 = array1.reshape(4,3)
print(array1)
  • vstack 将两个矩阵上下拼接

  • hstack 将两个矩阵左右拼接

  • dot() 点乘

print(array1.dot(array2))
  • diff() 差分
res1 = np.diff(array1,axis=1)
print(res1, type(res1))
  • 数学计算
print(np.amax(array1))
print(np.amin(array1))
print(np.mean(array1)) # 平均值
print(np.median(array1)) # 中位数
print(np.std(array1)) # 2.48327740429189 标准差
print(np.var(array1)) # 6.166666666666667 方差   比如计算偏科这样的需求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值