【Seaborn-驯化】一文搞懂seaborn画柱状图的使用细节:barplot

【Seaborn-驯化】一文搞懂seaborn画柱状图的使用细节:barplot
 
本次修炼方法请往下查看
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地!
🎇 免费获取相关内容文档关注:微信公众号,发送 pandas 即可获取
🎇 相关内容视频讲解 B站

🎓 博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位 个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验

🔧 技术专长: 在机器学习、搜索、广告、推荐、CV、NLP、多模态、数据分析等算法相关领域有丰富的项目实战经验。已累计为求职、科研、学习等需求提供近千次有偿|无偿定制化服务,助力多位小伙伴在学习、求职、工作上少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于机器学习、深度学习、数据分析、NLP、PyTorch、Python、Linux、工作、项目总结相关的实用内容。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


下滑查看解决方法

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🎯 1. 基本介绍

  直方图是一种常用于展示数据分布的统计图表,它通过将数据分组并计算每组的频数或概率来展示数据的分布情况。在Python中,Seaborn库提供了一个简单易用的barplot函数来绘制直方图。

💡 2. 原理介绍

  直方图的计算主要涉及以下几个步骤:

  • 分组:将数据分为若干个连续的区间,这些区间称为“桶”(bins)。
    计数:计算每个桶中的数据点数量。
    计算频率/概率:如果需要,将每组的频数除以总数据点数,得到每组的频率或概率。上的值。

🔍 3. 画图实践

3.1 数据准备

   我们通过seaborn自带的数据对其进行相关的画图,具体的导入数据代码如下所示:

import seaborn as sns
import matplotlib.pyplot as plt

# 使用Seaborn内置的tips数据集
tips = sns.load_dataset("tips")

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
...	...	...	...	...	...	...	...
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

3.2 画图实践

   如果画两个变量的数量变化,需要用到柱状图,需要使用barplot函数,具体的代码如下所示:

# 注意看看Y轴,看到没,统计函数默认是 mean,
import seaborn as sns
sns.set_style("whitegrid")
tips = sns.load_dataset("tips")
ax = sns.barplot(x="day", y="total_bill", data=tips,ci=0)

在这里插入图片描述

  有时候我们不仅要分组,同时对每个分组内某个特征维度进行对比分析,具体的代码如下所示:

# 分组的柱状图
ax = sns.barplot(x="day", y="total_bill", hue="sex", data=tips,ci=0)

在这里插入图片描述

4 高阶用法

   有时候我们需要对因子变量计数,然后绘制条形图,这个时候我们可以使用countplot,具体的代码如下所示:

import seaborn as sns
sns.set(style="darkgrid")
titanic = sns.load_dataset("titanic")
ax = sns.countplot(x="class", data=titanic)

在这里插入图片描述

  同样的分组统计的方法如下所示:

# 分组绘图
import matplotlib.pyplot as plt 
ax = sns.countplot(x="class", hue="who", data=titanic)
plt.show()
# 如果是横着放,x用y替代
ax = sns.countplot(y="class", hue="who", data=titanic)

在这里插入图片描述
在这里插入图片描述

🔍 4. 注意事项

  • 选择合适的桶数对于直方图的形状和解释至关重要。桶数太少可能导致数据过于集中,而桶数太多则可能导致数据过于分散。
  • Seaborn的barplot函数可以通过bins参数来指定桶数,或者使用hist函数来自动计算桶数。
  • 直方图可以用于展示连续数据的分布,但对于分类数据,应使用柱状图。

🔍 5. 总结

  直方图是一种直观的图表,用于展示数据的分布情况。通过Seaborn的barplot函数,我们可以轻松地绘制直方图,并探索数据的分布特征。希望这篇博客能够帮助你更好地理解直方图,并将其应用于数据探索和分析中。

### 如何使用 Seaborn 绘制柱状图 以下是关于如何使用 `seaborn` 库中的 `barplot()` 函数绘制柱状图的详细介绍以及示例代码。 #### 示例代码展示 以下是一个完整的 Python 代码示例,用于演示如何使用 `seaborn.barplot()` 方法绘制柱状图: ```python import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # 创建一个简单的数据集 data = {'Category': ['A', 'B', 'C', 'D'], 'Values': [3, 7, 5, 9]} df = pd.DataFrame(data) # 设置主题风格 sns.set_theme(style="whitegrid") # 使用 barplot() 方法绘制柱状图 plt.figure(figsize=(8, 6)) ax = sns.barplot(x='Category', y='Values', data=df, palette='viridis') # 添加标题和标签 ax.set_title('Seaborn Bar Plot Example', fontsize=16) ax.set_xlabel('Categories', fontsize=14) ax.set_ylabel('Values', fontsize=14) # 显示图表 plt.show() ``` 上述代码实现了以下几个功能: - 数据准备阶段创建了一个简单的小型 DataFrame[^1]。 - 调用了 `seaborn.barplot()` 方法,并指定了横轴 (`x`) 和纵轴 (`y`) 的变量名称。 - 配置了颜色调色板参数 `palette` 来增强视觉效果。 - 增加了图表标题、坐标轴标签以便于理解图表含义。 #### 关键点解析 当误差线较长时,这通常表明数据具有较大的离散程度或者样本数量较少。如果希望显示标准差或其他统计量作为误差范围,则可以通过设置 `ci` 参数实现自定义控制。默认情况下,`ci=95` 表示计算并显示 95% 置信区间。 #### 注意事项 为了确保绘图质量,在实际应用过程中可能还需要调整其他选项比如旋转 X 轴文字角度等细节部分以适应具体需求场景下的可读性和美观度要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法驯化师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值