逆序数定义:在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
下面给出一组数据进行分析:
a【6】={3 , 6, 8, 4, 5, 7};
根据归并排序通过 mid 将数组分为两部分;
一部分是 left 到 mid a【0】----a【2】 即3,4,5;
一部分是 mid+1到 right a【3】----a【5】 即6,7,8;
归并排序中将两部分数组合并时是通过判断第一部分和第二部分数组当前元素的大小来合并的;
如果第一部分的0位大于第二部分的0位,则保存数组的0位等于小的0位,小的一部分数组的指向向后移,然后再次比较确定保存数组的1位..........
1:i=0 j=3; a【i】=3 < a【j】=4 ; c【0】=a【i】;i++;(没有逆序)
2:i=1 j=3; a【i】=6 > a【j】=4;c【1】=a【j】;j++ 此时逆序数总数因加上 mid-i+1 =2(第一部分中6,8大于第二部分的当前值4)
(即第一部分中比第二部分当前值大的元素的总数 )
...............
模拟玩后样例的逆序数是5;
给出模板:
#include<cstdio>
using namespace std;
const int maxn=1000;
int a[maxn],c[maxn],count;
void Merge(int a[],int left,int mid,int right,int c[]){
int i=left;
int j=mid+1;
int k=left;
while(i<=mid && j<=right){
if(a[i]<=a[j])c[k++]=a[i++];
else c[k++]=a[j++],count+=mid-i+1;
}
while(i<=mid)c[k++]=a[i++];
while(j<=right)c[k++]=a[j++];
for(int i=left;i<=right;i++)a[i]=c[i];
}
void MergeSort(int a[],int left,int right,int c[]){
if(left<right){
int mid=(left+right)/2;
MergeSort(a,left,mid,c);
MergeSort(a,mid+1,right,c);
Merge(a,left,mid,right,c);
}
}
int main(){
int n;
while(~scanf("%d",&n)){
count=0;
for(int i=0;i<n;i++)scanf("%d",&a[i]);
MergeSort(a,0,n-1,c);
printf("%d\n",count);
}
return 0;
}