利用归并排序求逆序数

本文介绍了如何利用归并排序算法高效地计算一个数组的逆序数。在归并过程中,通过比较和计算逆序对产生的条件,可以累加逆序数。最终,所有归并阶段的逆序数之和即为原始数组的逆序数。
摘要由CSDN通过智能技术生成

  假设A[1…n]是一个有n个不同元素的数组,若i < j 且 A[i] > A[j],则对偶(i, j)称为A的一个逆序对。例如,对于数组[2, 3, 8, 6, 1],它的所有逆序对为(1, 5),(2, 5),(3, 4),(3, 5),(4, 5),共有5个逆序对,所以逆序数为5。
  当数组中元素数量较少时,我们可以通过手工计算数组的逆序数;但是如果数组中元素比较多时,手工计算比较麻烦,我们可以利用归并排序来计算数组的逆序数。归并排序的思路是将数组A[1…n]分成A[1…mid]和A[mid+1…n]分别进行归并排序,然后再将这两个排好序的数组合并。在合并的过程中(假设按从小到大排序,1 <= i <= mid 且 mid + 1 <= j <= n),当A[i] <= A[j]时,没有逆序对;当A[i] > A[j]时,A[1…mid]中比A[i]大的数都比A[j]大,又因为A[j]要放在A[i]前面,所以当前的逆序数就等于mid - i + 1。把所有归并过程中的逆序数加起来就是原数组的逆序数。

    //归并排序求逆序数的代码
    static int merge(int* arr, int low, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值