基本分段存储管理方式详解

4.4 基本分段存储管理方式

  • 一、分段存储管理方式的引入
  • 二、分段系统的基本原理
  • 三、信息共享
  • 四、段页式存储管理方式

一、分段存储管理方式的引入

分页存储管理方式存在的问题:

图片1

图片2

段间离散,段内连续!

图片3

图片4

二、基本分段存储管理方式的原理

图片5

分段存储管理的原理

  • 作业分为若干个段。每段分配一个连续的内存区,由于各段的长度不等,这些区域也就大小不一。作业各段间不要求连续。
  • 基本分段式存储管理的原理
    在段式存储管理原理的基础上,将整个作业的全部段装入内存。
  • 请求分段式存储管理的原理
    在段式存储管理原理的基础上,不要求将整个作业的全部段装入内存。值装入作业的几段即可运行,其余段根据运行需要再装入内存。

2、基本分段存储管理的实现

图片6

图片7

地址变换机构

  • 在系统中设置段表寄存器,用于存放段表的起始地址和段表长度,以实现从进程的逻辑地址到物理地址的变换。
  • 当段表存放在内存中时,每访问一个数据,都需访问两次内存,降低了计算机的速率。
解决方法:设置联想寄存器,用于保存最近常用的段表项。

图片8

3、分页和分段的主要区别

相似点:
  • 采用离散分配方式,通过地址映射机构实现地址变换
不同点:
  • 页是信息的物理单位,分页是为了满足系统的需要;段是信息的逻辑单位,含有意义相对完整的信息,是为了满足用户的需要。
  • 页的大小固定且由系统确定,由系统把逻辑地址分为页号和页内地址,由机器硬件实现;段的长度不固定,取决于用户程序,编译程序对源程序编译时根据信息的性质划分。
  • 分页的作业地址空间是一维的;分段的作业地址空间是二维的。

三、信息共享

  • 分段系统的一个突出优点是易于实现段的共享和保护,允许若干个进程共享一个或多个分段,,且对段的保护十分简单易行。
  • 分页系统中虽然也能实现程序和数据的共享,但远不如分段系统方便。

图片9

图片10

图片11

四、段页式存储管理方式

图片12

图片13

2、地址变换过程

在段页式系统中,为了实现地址变换,增加一个段表寄存器,用来存放段表起始地址和段长。

图片14

图片15

  • 10
    点赞
  • 91
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
好的,下面对代码进行分段详解。 ``` import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms ``` 这一段代码导入了PyTorch所需的模块,包括torch、torch.nn、torch.optim和torchvision.datasets等。 ``` # 定义超参数 batch_size = 64 learning_rate = 0.01 num_epochs = 10 ``` 这里定义了模型训练所需的超参数,包括batch_size、learning_rate和num_epochs。 ``` # 数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) ``` 这里使用transforms模块对数据进行预处理,包括将图片转换为张量,以及对张量进行归一化操作。 ``` # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) ``` 这里使用datasets模块加载MNIST数据集,并使用DataLoader对数据进行批处理和打乱操作。 ``` # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 256) self.fc2 = nn.Linear(256, 128) self.fc3 = nn.Linear(128, 10) def forward(self, x): x = x.view(-1, 784) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x model = Net() ``` 这里定义了一个三层全连接神经网络模型,包括输入层、隐藏层和输出层。输入层有784个神经元,隐藏层有256和128个神经元,输出层有10个神经元,对应着10个数字类别。在forward函数中,进行了前向传播操作。 ``` # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) ``` 这里定义了损失函数和优化器,使用交叉熵损失函数和随机梯度下降优化器。 ``` # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) ``` 这里进行了模型训练,使用enumerate函数遍历DataLoader中的每个batch。对于每个batch,进行了前向传播、计算损失、反向传播和优化器更新参数的操作。在训练过程中,每100个batch输出一次损失。 ``` # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) ``` 这里对模型进行测试,首先使用model.eval()将模型设为评估模式,然后使用torch.no_grad()禁用梯度计算。对于测试集中的每个batch,进行了前向传播、计算预测值和计算准确率的操作。最后输出模型在测试集上的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loveCC_orange

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值