语音识别 - 历史发展

语音识别技术经历了模板匹配、统计模型到深度学习的演变。20世纪60年代的模板匹配阶段,动态时间规整(DTW)的出现解决了语音时长问题。80年代,统计模型尤其是HMM-GMM成为主流。21世纪初,深度学习的引入,如DNN-HMM和端到端模型,显著提升了识别性能。现代技术包括CTC、Transformer和Attention机制,不断优化语音识别的准确性和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


语音识别技术的发展历史主要包括三个阶段:

  • 模板匹配 DTW
  • 统计模型 GMM-HMM
  • 深度学习 DNN-HMM, E2E

一、模板匹配

20世纪60年代

  • 1964年, Martin 提出了一种 时间归一化 的方法,来解决语音时长不一致的问题。
    这个方法可以有效检测语音的端点,降低 语音时长 对 识别结果 的影响。
  • 1966 年,卡耐基梅隆大学的 Reddy 使用 动态跟踪音素 的方法,进行了 连续语音识别。 这个具有开创性。
  • 1969年,前苏联科学家 Vintsyuk 首次提出,将 动态规划算法 用于对语音信号的 时间规整。

这十年语音识别理论取得明显进步,这三项工作为后面几十年的AST发展奠定了坚实基础。但距离真正可靠的ASR目标还十分遥远。


20世纪70年代

  • 1970年,前苏联的 Velichko 和 Zagoruyko 将 模式识别 引入 ASR
  • 同年,Itakura 提出 线性预测编码(LPC)技术,并用于 ASR
  • 1978年,日本人 Sakoe 和 Chiba 在 Vintsyuk 基础上,成功的使用动态规划算法&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值