关于 BabyAGI
BabyAGI is an AI-powered task management system that uses OpenAI and Pinecone APIs to create, prioritize, and execute tasks.
- 官网:http://babyagi.org
- github : https://github.com/yoheinakajima/babyagi
- 文档:https://github.com/yoheinakajima/babyagi/blob/main/docs/README-cn.md
相关文章
- 【AI Agent洞察】04-BabyAGI:首个可动态调整优先级的任务自驱动智能体
https://zhuanlan.zhihu.com/p/669412115
此 Python 脚本是一个 AI 支持的任务管理系统示例。
该系统使用 OpenAI 和 Pinecone API 创建, 优先级排序和执行任务。
该系统背后的主要思想是基于 先前任务的结果 和 预定义的目标创建任务。
脚本然后使用 OpenAI 的自然语言处理(NLP)能力根据目标创建新任务, 并使用 Pinecone /Chroma/Weaviate 存储和检索任务结果以获得上下文. 这是原始的任务驱动的自驱代理(2023 年 3 月 28 日)的简化版本.
使用说明
脚本通过运行一个无限循环来工作, 该循环执行以下步骤:
- 从任务列表中提取第一个任务.
- 将任务发送给执行代理, 该代理使用 OpenAI API 根据上下文完成任务.
- 丰润结果并将其存储在 Pinecone/Chroma/Weaviate 中.
- 基于目标和前一个任务的结果创建新任务, 并根据优先级对任务列表进行排序.
函数 execution_agent()
使用 OpenAI API。
它接受两个参数:目标和任务. 然后它向 OpenAI 的 API 发送一个 prompt(提示), 该 API 返回任务的结果。
Prompt 包括 AI 系统任务的描述, 目标和任务本身. 结果然后以 string 形式返回.
task_creation_agent()
函数使用 OpenAI API 根据目标和前一个任务的结果创建新任务。
该函数接受 4 个参数:目标, 前一个任务的结果, 任务描述和当前任务列表. 然后它向 OpenAI 的 API 发送一个 prompt, 该 API 返回一个新任务的 string 列表. 函数然后将新任务作为字典列表返回, 其中每个字典包含任务的名称.
prioritization_agent()函数使用 OpenAI API 对任务列表进行重新排序. 该函数接受一个参数, 即当前任务的 ID. 它向 OpenAI 的 API 发送一个 prompt, 该 API 返回一个重新排序的任务列表(以数字编号).
最后, 脚本使用 Pinecone 存储和检索任务结果以获取上下文。
脚本根据 YOUR_TABLE_NAME
变量中指定的表名创建一个 Pinecone 索引。然后 Pinecone 将任务结果与任务名称和任何其他元数据(metadata)一起存储在索引中。
使用步骤
要使用此脚本, 您需要按照以下步骤操作:
- 通过
git clone https://github.com/yoheinakajima/babyagi.git
克隆 repository(仓库), 然后使用cd
进入克隆的 repo。 - 安装所需的包:
pip install -r requirements.txt
- 将
.env.example
文件复制到.env
:cp .env.example .env
。在这里, 您将设置以下变量。 - 在 OPENAI_API_KEY, OPENAPI_API_MODEL 和 PINECONE_API_KEY 变量中设置您的 OpenAI 和 Pinecone API 密钥.
- 在 PINECONE_ENVIRONMENT 变量中设置 Pinecone 环境.
- 在 TABLE_NAME 变量中设置存储任务结果的表的名称.
- (可选)在 OBJECTIVE 变量中设置任务管理系统的目标.
- (可选)在 INITIAL_TASK 变量中设置系统的第一个任务.
- 运行脚本.
上面的所有可选值也可以在命令行中指定.
Docker 容器中使用
在 docker 容器中运行系统,一步步设置你的 .env
文件,然后运行下述命令:
docker-compose up
支持的模型
此脚本适用于所有 OpenAI 模型, 以及 Llama (通过 Llama.cp)。
默认模型是 gpt-3.5-turbo。
要使用不同的模型, 请通过 OPENAI_API_MODEL
指定, 或者使用命令行。
Llama
下载最新版的Llama.cpp 并按照说明进行编译。您还需要 Llama 模型的权重。
下载后,将 LLAMA_MODEL_PATH
设置到 你要是用的模型地址。
为了方便,你可以链接 BabyAGI repo 中的 models 到你的 llama 模型地址。
接着传入参数 LLM_MODEL=llama
或 -l
运行脚本。
警告
该脚本被设计为作为任务管理系统的一部分持续运行。
持续运行此脚本可能导致 API 的使用费超高, 请务必谨慎使用并后果自负. 此外, 脚本需要正确设置 OpenAI 和 Pinecone API, 因此请确保在运行脚本之前已经设置了 API。
BabyAGI 是一个精简版本, 它的原版Task-Driven Autonomous Agent(任务驱动的自驱代理) 是在 Twitter 分享的(Mar 28, 2023)。这个版本缩减到了 140 行:13 条注释, 22 个空白行, 以及 105 行代码. Repo 的名称源于对原始自驱代理的反馈 - 作者并不是想暗示这就是 AGI。
@yoheinakajima用爱发电创作此 repo, 他碰巧是一位 VC(风险投资人) (很想看看你们在创造什么!)