Dify - 源码解读

以下内容来自于 通义灵码 插件:https://ezcode.blog.csdn.net/article/details/145154947


Dify 项目实现

项目整体分析

根据提供的代码片段和上下文,这个项目是一个复杂的基于 Flask 和 SQLAlchemy 的应用程序,主要用于管理和处理与知识库、对话、消息反馈、文件上传等相关的数据。以下是项目的整体结构和功能模块的详细分析:


1. 项目架构


1.1 技术栈
  • 框架:Flask
  • 数据库 ORM:SQLAlchemy
  • 数据库:PostgreSQL(推测)
  • 其他依赖:Pandas, Openpyxl, Jieba 等用于数据处理和自然语言处理。

1.2 主要模块
  • 模型层 (models):定义了数据库表及其关系。
  • 服务层 (services):实现了业务逻辑和服务接口。
  • 工具层 (tools):提供了各种工具类和辅助函数。
  • 路由层 (routesviews):处理 HTTP 请求和响应。
  • 配置层 (configs):管理应用程序的配置参数。

2. 核心功能模块


2.1 应用配置与管理
  • App:表示应用程序的基本信息和配置。
  • 包含应用模式(如完成任务、工作流、聊天等)、图标类型、描述等字段。
  • 支持多种模式,如 completion, workflow, chat, advanced-chat, agent-chat 等。
  • 提供属性方法动态更新应用模式为 AGENT_CHAT
  • AppModelConfig:存储应用的模型配置。
  • 包括预设提示、建议问题、语音转文字、文本转语音等功能配置。
  • 支持 agent 模式配置,包括是否启用、策略选择和工具列表。

2.2 对话与消息管理
  • Conversation:表示一次完整的对话,包含多条消息。
  • 关联 Message 表,支持对话中的每条消息记录。
  • 提供属性方法获取对话的输入、模型配置、摘要等信息。
  • Message:表示对话中的每条消息。
  • 包含用户输入、agent 回复、工具调用结果等信息。
  • 支持消息的元数据、状态、错误信息等属性。
  • 提供属性方法处理文件 URL 签名、获取用户反馈、注释等。
  • MessageFeedback:记录用户对消息的反馈。
  • 包含评分、内容、来源等信息。
  • MessageFile:记录消息中涉及的文件信息。
  • 支持本地文件、远程 URL 和工具文件的传输方式。

2.3 Agent 功能实现
  • App 类中的 is_agent 属性:判断当前应用是否启用了 agent 模式,并根据配置动态更新应用模式为 AGENT_CHAT
  • AppModelConfig 类中的 agent_mode_dict 属性:返回一个包含 agent 配置的字典,包括是否启用、策略选择和工具列表。
  • DatasetRetrieval:实现数据检索逻辑,支持单次和多次检索策略。
  • 提供工具方法创建单个或多个数据集检索工具,支持不同的检索策略和工具调用。

2.4 数据检索与重排序
  • RetrievalService:提供具体的数据检索实现,负责与数据库或其他持久化存储进行交互,获取实际的文档数据。
  • 支持语义搜索、关键词搜索等多种检索方法。
  • 提供格式化检索结果的方法。
  • DataPostProcessor:实现数据后处理逻辑,如计算文档评分、重排序等。
  • 支持基于关键词和向量的评分计算。
  • 提供重排序方法,确保检索结果的相关性和准确性。

2.5 文件与资源管理
  • UploadFile:管理上传的文件信息。
  • 包含文件的存储位置、名称、大小、扩展名等信息。
  • 支持文件的使用记录和哈希值校验。
  • DatasetRetrieverResource:记录从数据集中检索到的资源信息。
  • 包含数据源类型、段落 ID、分数、内容等信息。

2.6 标签与绑定
  • Tag:定义标签信息,用于分类和标记应用、知识库等。
  • 包含标签名称、类型、创建者等信息。
  • TagBinding:记录标签与目标对象的绑定关系。
  • 支持将标签绑定到特定的应用或知识库。

3. 扩展性与灵活性

  • 模块化设计:各个功能模块独立封装,便于维护和扩展。
  • 配置驱动:通过配置文件和数据库表管理应用行为,支持灵活调整。
  • 插件机制:支持集成第三方工具和服务,增强系统功能。
  • API 接口:提供 RESTful API 接口,方便与其他系统集成。

4. 性能优化

  • 索引与缓存:通过数据库索引和内存缓存提高查询效率。
  • 异步处理:利用多线程和异步任务处理大量数据检索和计算任务。
  • 分页与批量操作:支持分页查询和批量插入/更新操作,减少数据库压力。

5. 安全性

  • 权限控制:通过用户角色和权限管理,确保敏感数据的安全访问。
  • 日志记录:记录操作日志,便于审计和故障排查。
  • 数据加密:对敏感数据进行加密存储,防止数据泄露。

总结

这个项目是一个功能丰富且架构清晰的知识库管理系统,涵盖了应用配置、对话管理、数据检索、文件管理等多个方面。通过模块化设计和配置驱动的方式,系统具备良好的扩展性和灵活性,能够满足不同应用场景的需求。同时,项目在性能优化和安全性方面也做了充分考虑,确保系统的高效稳定运行。 如果你有更具体的文件内容或代码片段,可以提供更多细节以获得更深入的解释。


RAG 实现

RAG(Retrieval-Augmented Generation)实现分析

根据提供的代码片段和上下文,这个项目中的 RAG 功能主要通过以下几个方面实现:

  1. 数据检索模块 2. 文档处理与格式化 3. 重排序与评分计算 4. 工具集成与调用 5. 对话管理与消息处理

1. 数据检索模块


1.1 DatasetRetrieval

DatasetRetrieval 类是 RAG 核心逻辑的实现类,负责从知识库中检索相关信息。

class DatasetRetrieval:
    def retrieve(
        self,
        app_id: str,
        user_id: str,
        tenant_id: str,
        model_config: ModelConfigWithCredentialsEntity,
        config: DatasetEntity,
        query: str,
        invoke_from: InvokeFrom,
        show_retrieve_source: bool,
        hit_callback: DatasetIndexToolCallbackHandler,
        message_id: str,
        memory: Optional[TokenBufferMemory] = None,
    ) -> Optional[str]:
        # ...
  • 功能:根据配置和查询参数 从指定的数据集中检索信息。
  • 逻辑
    • 支持单次和多次检索策略。
    • 处理不同类型的文档(内部和外部),并将结果格式化为 DocumentContext 对象。
    • 将检索结果按分数排序,并通过回调函数返回资源信息。
    • 返回拼接后的文档内容字符串。

1.2 RetrievalService

RetrievalService 类提供了具体的数据检索实现,负责与数据库或其他持久化存储进行交互,获取实际的文档数据。

from core.rag.datasource.retrieval_service import RetrievalService

# 在 dataset_retrieval.py 中使用
documents = RetrievalService.retrieve(
    retrieval_method=retrieval_model["search_method"],
    dataset_id=dataset.id,
    query=query,
    top_k=retrieval_model.get("top_k") or 2,
    score_threshold=retrieval_model.get("score_threshold", 0.0)
    if retrieval_model["score_threshold_enabled"]
    else 0.0,
    reranking_model=retrieval_model.get("reranking_model", None)
    if retrieval_model["reranking_enable"]
    else None,
    reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
    weights=retrieval_model.get("weights", None),
)
  • 功能:提供具体的检索方法实现,如语义搜索、关键词搜索等。
  • 逻辑
  • 支持多种检索方法,如语义搜索、关键词搜索等。
  • 提供格式化检索结果的方法。

2. 文档处理与格式化


2.1 Document

Document 类用于表示从数据集中检索到的文档对象。

from core.rag.models.document import Document

# 在 dataset_retrieval.py 中使用
for external_document in external_documents:
    document = Document(
        page_content=external_document.get("content"),
        metadata=external_document.get("metadata"),
        provider="external",
    )
  • 功能:封装文档的内容和元数据。
  • 逻辑
  • 包含文档内容 (page_content) 和元数据 (metadata)。
  • 支持不同的提供者类型(如内部或外部)。

2.2 DocumentContext

DocumentContext 类用于表示文档在对话中的上下文信息。

from core.rag.entities.context_entities import DocumentContext

# 在 dataset_retrieval.py 中使用
document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
  • 功能:封装文档内容及其相关分数。
  • 逻辑
  • 包含文档内容 (content) 和评分 (score)。
  • 用于在对话中展示检索到的文档信息。

3. 重排序与评分计算


3.1 DataPostProcessor

DataPostProcessor 类实现了数据后处理逻辑,如计算文档评分、重排序等。

from core.rag.data_post_processor.data_post_processor import DataPostProcessor

# 在 dataset_retrieval.py 中使用
data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
all_documents = data_post_processor.invoke(
    query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
)
  • 功能:实现数据后处理逻辑,包括评分计算和重排序。
  • 逻辑
  • 支持基于关键词和向量的评分计算。
  • 提供重排序方法,确保检索结果的相关性和准确性。

3.2 calculate_keyword_scorecalculate_vector_score 方法

这两个方法分别实现了基于关键词和向量的评分计算。

def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:    # ... def calculate_vector_score(    self, all_documents: list[Document], top_k: int, score_threshold: float ) -> list[Document]:    # ... 
  • 功能:计算文档的评分并进行排序。
  • 逻辑
  • calculate_keyword_score 使用 TF-IDF 和余弦相似度计算关键词评分。
  • calculate_vector_score 根据给定的评分阈值过滤文档,并对文档按评分排序。

4. 工具集成与调用


4.1 DatasetRetrieverToolDatasetMultiRetrieverTool 这些工具类用于创建单个或多个数据集检索工具,支持不同的检索策略和工具调用。
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool

# 在 dataset_retrieval.py 中使用
tools.append(DatasetRetrieverTool.from_dataset(
    dataset=dataset,
    top_k=top_k,
    score_threshold=score_threshold,
    hit_callbacks=[hit_callback],
    return_resource=return_resource,
    retriever_from=invoke_from.to_source(),
))
  • 功能:创建单个或多个数据集检索工具。
  • 逻辑
    • 支持不同的检索策略和工具调用。
    • 提供灵活的工具配置和调用方式。

5. 对话管理与消息处理


5.1 ConversationMessageConversationMessage 类用于管理和处理对话流程。
class Conversation(db.Model):
    # ...

class Message(db.Model):
    # ...
  • 功能:记录和管理对话中的每条消息。
  • 逻辑
    • Conversation 表示一次完整的对话,包含多条消息。
    • Message 表示对话中的每条消息,支持 agent 基于的消息处理。

5.2 Agent 模式 Agent 模式通过 AppModelConfig 类中的 agent_mode 字段配置,支持不同的策略选择和工具调用。
class AppModelConfig(db.Model):
    # ...
    @property
    def agent_mode_dict(self) -> dict:
        return (
            json.loads(self.agent_mode)
            if self.agent_mode
            else {"enabled": False, "strategy": None, "tools": [], "prompt": None}
        )
  • 功能:配置 agent 的启用状态、策略和工具。
  • 逻辑
  • 支持 function_callreact 等策略。
  • 集成多种工具,支持不同类型的工具调用。

总结

项目的 RAG 功能通过以下方式实现:

  1. 数据检索模块:通过 DatasetRetrievalRetrievalService 类实现数据检索逻辑,支持单次和多次检索策略。

  2. 文档处理与格式化:通过 DocumentDocumentContext 类封装文档内容及其上下文信息。

  3. 重排序与评分计算:通过 DataPostProcessor 类和评分计算方法实现文档评分和重排序。

  4. 工具集成与调用:通过 DatasetRetrieverToolDatasetMultiRetrieverTool 类集成多种工具,支持不同的检索策略和工具调用。

  5. 对话管理与消息处理:通过 ConversationMessage 类管理对话流程,支持 agent 基于的消息处理。 这种设计使得 RAG 功能灵活且可扩展,能够根据不同的应用场景和需求进行调整和优化。如果你有更具体的文件内容或代码片段,可以提供更多细节以获得更深入的解释。


Agent 实现

Agent 实现分析 根据提供的代码片段和上下文,项目中的 agent 功能主要通过以下几个方面实现:

  1. Agent 模式配置

  2. Agent 模式的启用与策略选择

  3. 工具(Tools)的集成与调用

  4. 对话管理与消息处理

  5. 数据检索与重排序


1. Agent 模式配置

AppModelConfig 类中,agent_mode 字段用于存储 agent 的配置信息。这些配置包括是否启用 agent、使用哪种策略(如 function_callreact)、以及使用的工具列表。

class AppModelConfig(db.Model):
    # ...
    agent_mode = db.Column(db.Text)
    
    @property
    def agent_mode_dict(self) -> dict:
        return (
            json.loads(self.agent_mode)
            if self.agent_mode
            else {"enabled": False, "strategy": None, "tools": [], "prompt": None}
        )
  • agent_mode_dict:返回一个包含 agent 配置的字典,包括是否启用 (enabled)、策略 (strategy) 和工具 (tools)。

2. Agent 模式的启用与策略选择

App 类中,is_agent 属性用于判断当前应用是否启用了 agent 模式,并根据配置动态更新应用模式为 AGENT_CHAT

class App(db.Model):
    # ...
    @property
    def is_agent(self) -> bool:
        app_model_config = self.app_model_config
        if not app_model_config:
            return False
        if not app_model_config.agent_mode:
            return False
        if app_model_config.agent_mode_dict.get("enabled", False) and app_model_config.agent_mode_dict.get(
            "strategy", ""
        ) in {"function_call", "react"}:
            self.mode = AppMode.AGENT_CHAT.value
            db.session.commit()
            return True
        return False
  • is_agent:检查 app_model_config 中的 agent_mode 是否启用,并根据策略类型 (function_callreact) 判断是否切换到 AGENT_CHAT 模式。

  1. 工具(Tools)的集成与调用

Agent 可以调用各种工具来完成任务。这些工具的定义和配置也保存在 agent_mode_dict 中。具体的工具调用逻辑可能在其他模块中实现,例如 dataset_retrieval.py 文件中的 DatasetRetrieverToolDatasetMultiRetrieverTool

class DatasetRetrieval:
    # ...
    def to_dataset_retriever_tool(
        self,
        tenant_id: str,
        dataset_ids: list[str],
        retrieve_config: DatasetRetrieveConfigEntity,
        return_resource: bool,
        invoke_from: InvokeFrom,
        hit_callback: DatasetIndexToolCallbackHandler,
    ) -> Optional[list[DatasetRetrieverBaseTool]]:
        # 创建单个或多个数据集检索工具
        pass
  • to_dataset_retriever_tool:根据配置创建单个或多个数据集检索工具,支持不同的检索策略和工具调用。

4. 对话管理与消息处理

Agent 的对话管理主要通过 ConversationMessage 类实现。每个对话可以包含多条消息,每条消息可以包含用户输入、agent 回复、工具调用结果等。

class Conversation(db.Model):
    # ...
    messages = db.relationship("Message", backref="conversation", lazy="select", passive_deletes="all")

class Message(db.Model):
    # ...
    @property
    def agent_based(self) -> bool:
        return self.override_model_configs is not None
  • Conversation:表示一次完整的对话,包含多条消息。
  • Message:表示对话中的每条消息,agent_based 属性用于标识该消息是否由 agent 处理。

5. 数据检索与重排序

Agent 在处理用户查询时,会调用数据检索服务(如 RetrievalService),并根据配置进行数据检索和重排序。具体实现可以在 dataset_retrieval.py 文件中找到。

class DatasetRetrieval:
    # ...
    def retrieve(
        self,
        app_id: str,
        user_id: str,
        tenant_id: str,
        model_config: ModelConfigWithCredentialsEntity,
        config: DatasetEntity,
        query: str,
        invoke_from: InvokeFrom,
        show_retrieve_source: bool,
        hit_callback: DatasetIndexToolCallbackHandler,
        message_id: str,
        memory: Optional[TokenBufferMemory] = None,
    ) -> Optional[str]:
        # 根据配置从指定的数据集中检索信息
        pass
  • retrieve:根据配置从指定的数据集中检索信息,支持单次和多次检索策略。
  • RetrievalService:提供具体的数据检索实现,负责与数据库或其他持久化存储进行交互,获取实际的文档数据。

总结

项目的 agent 功能通过以下方式实现:

  • 配置管理:通过 AppModelConfig 类中的 agent_mode 字段配置 agent 的启用状态、策略和工具。
  • 模式切换:在 App 类中动态判断并切换应用模式为 AGENT_CHAT
  • 工具调用:集成多种工具,支持不同类型的工具调用,如数据检索、外部 API 调用等。
  • 对话管理:通过 ConversationMessage 类管理对话流程,支持 agent 基于的消息处理。
  • 数据检索:利用 RetrievalServiceDatasetRetrieval 类实现数据检索和重排序,确保 agent 能够高效地处理用户查询。 这种设计使得 agent 功能灵活且可扩展,能够根据不同的应用场景和需求进行调整和优化。如果你有更具体的文件内容或代码片段,可以提供更多细节以获得更深入的解释。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值