文章目录
以下内容来自于 通义灵码 插件:https://ezcode.blog.csdn.net/article/details/145154947
Dify 项目实现
项目整体分析
根据提供的代码片段和上下文,这个项目是一个复杂的基于 Flask 和 SQLAlchemy 的应用程序,主要用于管理和处理与知识库、对话、消息反馈、文件上传等相关的数据。以下是项目的整体结构和功能模块的详细分析:
1. 项目架构
1.1 技术栈
- 框架:Flask
- 数据库 ORM:SQLAlchemy
- 数据库:PostgreSQL(推测)
- 其他依赖:Pandas, Openpyxl, Jieba 等用于数据处理和自然语言处理。
1.2 主要模块
- 模型层 (
models
):定义了数据库表及其关系。 - 服务层 (
services
):实现了业务逻辑和服务接口。 - 工具层 (
tools
):提供了各种工具类和辅助函数。 - 路由层 (
routes
或views
):处理 HTTP 请求和响应。 - 配置层 (
configs
):管理应用程序的配置参数。
2. 核心功能模块
2.1 应用配置与管理
App
类:表示应用程序的基本信息和配置。- 包含应用模式(如完成任务、工作流、聊天等)、图标类型、描述等字段。
- 支持多种模式,如
completion
,workflow
,chat
,advanced-chat
,agent-chat
等。 - 提供属性方法动态更新应用模式为
AGENT_CHAT
。 AppModelConfig
类:存储应用的模型配置。- 包括预设提示、建议问题、语音转文字、文本转语音等功能配置。
- 支持 agent 模式配置,包括是否启用、策略选择和工具列表。
2.2 对话与消息管理
Conversation
类:表示一次完整的对话,包含多条消息。- 关联
Message
表,支持对话中的每条消息记录。 - 提供属性方法获取对话的输入、模型配置、摘要等信息。
Message
类:表示对话中的每条消息。- 包含用户输入、agent 回复、工具调用结果等信息。
- 支持消息的元数据、状态、错误信息等属性。
- 提供属性方法处理文件 URL 签名、获取用户反馈、注释等。
MessageFeedback
类:记录用户对消息的反馈。- 包含评分、内容、来源等信息。
MessageFile
类:记录消息中涉及的文件信息。- 支持本地文件、远程 URL 和工具文件的传输方式。
2.3 Agent 功能实现
App
类中的is_agent
属性:判断当前应用是否启用了 agent 模式,并根据配置动态更新应用模式为AGENT_CHAT
。AppModelConfig
类中的agent_mode_dict
属性:返回一个包含 agent 配置的字典,包括是否启用、策略选择和工具列表。DatasetRetrieval
类:实现数据检索逻辑,支持单次和多次检索策略。- 提供工具方法创建单个或多个数据集检索工具,支持不同的检索策略和工具调用。
2.4 数据检索与重排序
RetrievalService
类:提供具体的数据检索实现,负责与数据库或其他持久化存储进行交互,获取实际的文档数据。- 支持语义搜索、关键词搜索等多种检索方法。
- 提供格式化检索结果的方法。
DataPostProcessor
类:实现数据后处理逻辑,如计算文档评分、重排序等。- 支持基于关键词和向量的评分计算。
- 提供重排序方法,确保检索结果的相关性和准确性。
2.5 文件与资源管理
UploadFile
类:管理上传的文件信息。- 包含文件的存储位置、名称、大小、扩展名等信息。
- 支持文件的使用记录和哈希值校验。
DatasetRetrieverResource
类:记录从数据集中检索到的资源信息。- 包含数据源类型、段落 ID、分数、内容等信息。
2.6 标签与绑定
Tag
类:定义标签信息,用于分类和标记应用、知识库等。- 包含标签名称、类型、创建者等信息。
TagBinding
类:记录标签与目标对象的绑定关系。- 支持将标签绑定到特定的应用或知识库。
3. 扩展性与灵活性
- 模块化设计:各个功能模块独立封装,便于维护和扩展。
- 配置驱动:通过配置文件和数据库表管理应用行为,支持灵活调整。
- 插件机制:支持集成第三方工具和服务,增强系统功能。
- API 接口:提供 RESTful API 接口,方便与其他系统集成。
4. 性能优化
- 索引与缓存:通过数据库索引和内存缓存提高查询效率。
- 异步处理:利用多线程和异步任务处理大量数据检索和计算任务。
- 分页与批量操作:支持分页查询和批量插入/更新操作,减少数据库压力。
5. 安全性
- 权限控制:通过用户角色和权限管理,确保敏感数据的安全访问。
- 日志记录:记录操作日志,便于审计和故障排查。
- 数据加密:对敏感数据进行加密存储,防止数据泄露。
总结
这个项目是一个功能丰富且架构清晰的知识库管理系统,涵盖了应用配置、对话管理、数据检索、文件管理等多个方面。通过模块化设计和配置驱动的方式,系统具备良好的扩展性和灵活性,能够满足不同应用场景的需求。同时,项目在性能优化和安全性方面也做了充分考虑,确保系统的高效稳定运行。 如果你有更具体的文件内容或代码片段,可以提供更多细节以获得更深入的解释。
RAG 实现
RAG(Retrieval-Augmented Generation)实现分析
根据提供的代码片段和上下文,这个项目中的 RAG 功能主要通过以下几个方面实现:
- 数据检索模块 2. 文档处理与格式化 3. 重排序与评分计算 4. 工具集成与调用 5. 对话管理与消息处理
1. 数据检索模块
1.1 DatasetRetrieval
类
DatasetRetrieval
类是 RAG 核心逻辑的实现类,负责从知识库中检索相关信息。
class DatasetRetrieval:
def retrieve(
self,
app_id: str,
user_id: str,
tenant_id: str,
model_config: ModelConfigWithCredentialsEntity,
config: DatasetEntity,
query: str,
invoke_from: InvokeFrom,
show_retrieve_source: bool,
hit_callback: DatasetIndexToolCallbackHandler,
message_id: str,
memory: Optional[TokenBufferMemory] = None,
) -> Optional[str]:
# ...
- 功能:根据配置和查询参数 从指定的数据集中检索信息。
- 逻辑:
- 支持单次和多次检索策略。
- 处理不同类型的文档(内部和外部),并将结果格式化为
DocumentContext
对象。 - 将检索结果按分数排序,并通过回调函数返回资源信息。
- 返回拼接后的文档内容字符串。
1.2 RetrievalService
类
RetrievalService
类提供了具体的数据检索实现,负责与数据库或其他持久化存储进行交互,获取实际的文档数据。
from core.rag.datasource.retrieval_service import RetrievalService
# 在 dataset_retrieval.py 中使用
documents = RetrievalService.retrieve(
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
)
- 功能:提供具体的检索方法实现,如语义搜索、关键词搜索等。
- 逻辑:
- 支持多种检索方法,如语义搜索、关键词搜索等。
- 提供格式化检索结果的方法。
2. 文档处理与格式化
2.1 Document
类
Document
类用于表示从数据集中检索到的文档对象。
from core.rag.models.document import Document
# 在 dataset_retrieval.py 中使用
for external_document in external_documents:
document = Document(
page_content=external_document.get("content"),
metadata=external_document.get("metadata"),
provider="external",
)
- 功能:封装文档的内容和元数据。
- 逻辑:
- 包含文档内容 (
page_content
) 和元数据 (metadata
)。 - 支持不同的提供者类型(如内部或外部)。
2.2 DocumentContext
类
DocumentContext
类用于表示文档在对话中的上下文信息。
from core.rag.entities.context_entities import DocumentContext
# 在 dataset_retrieval.py 中使用
document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
- 功能:封装文档内容及其相关分数。
- 逻辑:
- 包含文档内容 (
content
) 和评分 (score
)。 - 用于在对话中展示检索到的文档信息。
3. 重排序与评分计算
3.1 DataPostProcessor
类
DataPostProcessor
类实现了数据后处理逻辑,如计算文档评分、重排序等。
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
# 在 dataset_retrieval.py 中使用
data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
all_documents = data_post_processor.invoke(
query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
)
- 功能:实现数据后处理逻辑,包括评分计算和重排序。
- 逻辑:
- 支持基于关键词和向量的评分计算。
- 提供重排序方法,确保检索结果的相关性和准确性。
3.2 calculate_keyword_score
和 calculate_vector_score
方法
这两个方法分别实现了基于关键词和向量的评分计算。
def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]: # ... def calculate_vector_score( self, all_documents: list[Document], top_k: int, score_threshold: float ) -> list[Document]: # ...
- 功能:计算文档的评分并进行排序。
- 逻辑:
calculate_keyword_score
使用 TF-IDF 和余弦相似度计算关键词评分。calculate_vector_score
根据给定的评分阈值过滤文档,并对文档按评分排序。
4. 工具集成与调用
4.1 DatasetRetrieverTool
和 DatasetMultiRetrieverTool
这些工具类用于创建单个或多个数据集检索工具,支持不同的检索策略和工具调用。
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
# 在 dataset_retrieval.py 中使用
tools.append(DatasetRetrieverTool.from_dataset(
dataset=dataset,
top_k=top_k,
score_threshold=score_threshold,
hit_callbacks=[hit_callback],
return_resource=return_resource,
retriever_from=invoke_from.to_source(),
))
- 功能:创建单个或多个数据集检索工具。
- 逻辑:
- 支持不同的检索策略和工具调用。
- 提供灵活的工具配置和调用方式。
5. 对话管理与消息处理
5.1 Conversation
和 Message
类 Conversation
和 Message
类用于管理和处理对话流程。
class Conversation(db.Model):
# ...
class Message(db.Model):
# ...
- 功能:记录和管理对话中的每条消息。
- 逻辑:
Conversation
表示一次完整的对话,包含多条消息。Message
表示对话中的每条消息,支持 agent 基于的消息处理。
5.2 Agent 模式
Agent 模式通过 AppModelConfig
类中的 agent_mode
字段配置,支持不同的策略选择和工具调用。
class AppModelConfig(db.Model):
# ...
@property
def agent_mode_dict(self) -> dict:
return (
json.loads(self.agent_mode)
if self.agent_mode
else {"enabled": False, "strategy": None, "tools": [], "prompt": None}
)
- 功能:配置 agent 的启用状态、策略和工具。
- 逻辑:
- 支持
function_call
和react
等策略。 - 集成多种工具,支持不同类型的工具调用。
总结
项目的 RAG 功能通过以下方式实现:
-
数据检索模块:通过
DatasetRetrieval
和RetrievalService
类实现数据检索逻辑,支持单次和多次检索策略。 -
文档处理与格式化:通过
Document
和DocumentContext
类封装文档内容及其上下文信息。 -
重排序与评分计算:通过
DataPostProcessor
类和评分计算方法实现文档评分和重排序。 -
工具集成与调用:通过
DatasetRetrieverTool
和DatasetMultiRetrieverTool
类集成多种工具,支持不同的检索策略和工具调用。 -
对话管理与消息处理:通过
Conversation
和Message
类管理对话流程,支持 agent 基于的消息处理。 这种设计使得 RAG 功能灵活且可扩展,能够根据不同的应用场景和需求进行调整和优化。如果你有更具体的文件内容或代码片段,可以提供更多细节以获得更深入的解释。
Agent 实现
Agent 实现分析 根据提供的代码片段和上下文,项目中的 agent
功能主要通过以下几个方面实现:
-
Agent 模式配置
-
Agent 模式的启用与策略选择
-
工具(Tools)的集成与调用
-
对话管理与消息处理
-
数据检索与重排序
1. Agent 模式配置
在 AppModelConfig
类中,agent_mode
字段用于存储 agent 的配置信息。这些配置包括是否启用 agent、使用哪种策略(如 function_call
或 react
)、以及使用的工具列表。
class AppModelConfig(db.Model):
# ...
agent_mode = db.Column(db.Text)
@property
def agent_mode_dict(self) -> dict:
return (
json.loads(self.agent_mode)
if self.agent_mode
else {"enabled": False, "strategy": None, "tools": [], "prompt": None}
)
agent_mode_dict
:返回一个包含 agent 配置的字典,包括是否启用 (enabled
)、策略 (strategy
) 和工具 (tools
)。
2. Agent 模式的启用与策略选择
在 App
类中,is_agent
属性用于判断当前应用是否启用了 agent 模式,并根据配置动态更新应用模式为 AGENT_CHAT
。
class App(db.Model):
# ...
@property
def is_agent(self) -> bool:
app_model_config = self.app_model_config
if not app_model_config:
return False
if not app_model_config.agent_mode:
return False
if app_model_config.agent_mode_dict.get("enabled", False) and app_model_config.agent_mode_dict.get(
"strategy", ""
) in {"function_call", "react"}:
self.mode = AppMode.AGENT_CHAT.value
db.session.commit()
return True
return False
is_agent
:检查app_model_config
中的agent_mode
是否启用,并根据策略类型 (function_call
或react
) 判断是否切换到AGENT_CHAT
模式。
- 工具(Tools)的集成与调用
Agent 可以调用各种工具来完成任务。这些工具的定义和配置也保存在 agent_mode_dict
中。具体的工具调用逻辑可能在其他模块中实现,例如 dataset_retrieval.py
文件中的 DatasetRetrieverTool
和 DatasetMultiRetrieverTool
。
class DatasetRetrieval:
# ...
def to_dataset_retriever_tool(
self,
tenant_id: str,
dataset_ids: list[str],
retrieve_config: DatasetRetrieveConfigEntity,
return_resource: bool,
invoke_from: InvokeFrom,
hit_callback: DatasetIndexToolCallbackHandler,
) -> Optional[list[DatasetRetrieverBaseTool]]:
# 创建单个或多个数据集检索工具
pass
to_dataset_retriever_tool
:根据配置创建单个或多个数据集检索工具,支持不同的检索策略和工具调用。
4. 对话管理与消息处理
Agent 的对话管理主要通过 Conversation
和 Message
类实现。每个对话可以包含多条消息,每条消息可以包含用户输入、agent 回复、工具调用结果等。
class Conversation(db.Model):
# ...
messages = db.relationship("Message", backref="conversation", lazy="select", passive_deletes="all")
class Message(db.Model):
# ...
@property
def agent_based(self) -> bool:
return self.override_model_configs is not None
Conversation
:表示一次完整的对话,包含多条消息。Message
:表示对话中的每条消息,agent_based
属性用于标识该消息是否由 agent 处理。
5. 数据检索与重排序
Agent 在处理用户查询时,会调用数据检索服务(如 RetrievalService
),并根据配置进行数据检索和重排序。具体实现可以在 dataset_retrieval.py
文件中找到。
class DatasetRetrieval:
# ...
def retrieve(
self,
app_id: str,
user_id: str,
tenant_id: str,
model_config: ModelConfigWithCredentialsEntity,
config: DatasetEntity,
query: str,
invoke_from: InvokeFrom,
show_retrieve_source: bool,
hit_callback: DatasetIndexToolCallbackHandler,
message_id: str,
memory: Optional[TokenBufferMemory] = None,
) -> Optional[str]:
# 根据配置从指定的数据集中检索信息
pass
retrieve
:根据配置从指定的数据集中检索信息,支持单次和多次检索策略。RetrievalService
:提供具体的数据检索实现,负责与数据库或其他持久化存储进行交互,获取实际的文档数据。
总结
项目的 agent
功能通过以下方式实现:
- 配置管理:通过
AppModelConfig
类中的agent_mode
字段配置 agent 的启用状态、策略和工具。 - 模式切换:在
App
类中动态判断并切换应用模式为AGENT_CHAT
。 - 工具调用:集成多种工具,支持不同类型的工具调用,如数据检索、外部 API 调用等。
- 对话管理:通过
Conversation
和Message
类管理对话流程,支持 agent 基于的消息处理。 - 数据检索:利用
RetrievalService
和DatasetRetrieval
类实现数据检索和重排序,确保 agent 能够高效地处理用户查询。 这种设计使得 agent 功能灵活且可扩展,能够根据不同的应用场景和需求进行调整和优化。如果你有更具体的文件内容或代码片段,可以提供更多细节以获得更深入的解释。