题目描述
给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转。
示例 1:
输入:123
输出:321
示例 2:
输入:-123
输出:-321
示例 3:
输入:120
输出:21
注意:
假设我们的环境只能存储得下 32 位的有符号整数,则其数值范围为 [−231, 231-1]。请根据这个假设,如果反转后整数溢出那么就返回 0。
解题思路
先在本子上画一画,找到原数字和取反后的数字之间有什么关系。首先需要连续 %10 取出每一位数,通过判断余数 =0 来判断是否取余结束。
while(x != 0)
{
temp = x % 10;
x = x / 10;
}
然后我们以输入123为例来分析:
temp | x | |
---|---|---|
第一次 | 3 | 12 |
第二次 | 2 | 1 |
第三次 | 1 | 0 |
我们需要的是输出321对不对,那看一看321可以怎么写:
321 = 3 * 10 * 10 + 2 * 10 + 1 = ((3 * 10) + 2) * 10) + 1
很明显,我们可以从中总结出这样一个式子:
temp = temp * 10 + (x % 10)
temp是前一次取余后的计算结果,x%10 是当前的余数。取余结束后的temp值即是我们需要的结果。算完取反数后,我们还要对其做判断,不能超过题目限制的范围。
题解
#include <stdio.h>
#include <stdlib.h>
int reverse(int x)
{
long temp; //temp有可能会超过int,所以需要定义为long,只需在最后输出的时候,强制转换一下即可。
while(x != 0)
{
temp = temp * 10 + (x % 10);
x = x / 10;
}
if(temp > 2147483647 || temp < -2147483648)
{
return 0;
}
return (int)temp;
}
int main(int argc, char const *argv[])
{
printf("%d\n", reverse(212125454));
return 0;
}