Aggregated Residual Transformations for Deep Neural Networks
文章地址https://arxiv.org/abs/1611.05431
代码地址https://github.com/miraclewkf/ResNeXt-PyTorch
采用VGG/ResNet的重复层策略,同时以简单的、可扩展的方式利用split-transform-merge策略。但是扩展性强。每个被聚合的拓扑结构都是一样的(这也是和 Inception 的差别,减轻设计负担)
multi-branch卷积网络:Inception models,多分枝架构,每个分支仔细定制,ResNet可以被认为是一个分枝网络,其中一个分支是身份映射。
全连接层: ∑ i = 1 D w i s i \sum^D_{i=1}w_is_i ∑i=1Dwisi。
Split:将数据 x \bf x x split成D个特征;
Transform:每个特征经过一个线性变换;
Merge:通过单位加合成最后的输出。
汇总转换: F ( x ) = ∑ i = 1 C T i ( x ) \mathcal F(x)=\sum^C_{i=1}\mathcal T_i(x) F(x)=∑i=1CTi(x)
Inception是一个非常明显的“split-transform-merge”结构,作者认为Inception不同分支的不同拓扑结构的特征有非常刻意的人工雕琢的痕迹,而往往调整Inception的内部结构对应着大量的超参数,这些超参数调整起来是非常困难的。
所以作者的思想是每个结构使用相同的拓扑结构,那么这时候的Inception(这里简称简化Inception)表示为 y = ∑ i = 1 C T i ( x ) {\bf y}=\sum^C_{i=1}\mathcal T_i(\bf x) y=∑i=1CT