ResNeXt

ResNeXt是一种深度神经网络结构,结合了ResNet的残差学习和Inception的多分支思想,但避免了Inception的复杂设计。通过分组卷积(group convolution)实现类似Inception的并行路径,每个分支拥有相同的拓扑结构,简化了网络设计,减少了超参数。ResNeXt在ImageNet上表现优于相同框架的ResNet,但可能在某些场景下不如Inception V4。尽管如此,其结构简单且运行效率高,适合GPU加速。
摘要由CSDN通过智能技术生成

Aggregated Residual Transformations for Deep Neural Networks

文章地址https://arxiv.org/abs/1611.05431
代码地址https://github.com/miraclewkf/ResNeXt-PyTorch

在这里插入图片描述
采用VGG/ResNet的重复层策略,同时以简单的、可扩展的方式利用split-transform-merge策略。但是扩展性强。每个被聚合的拓扑结构都是一样的(这也是和 Inception 的差别,减轻设计负担)
multi-branch卷积网络:Inception models,多分枝架构,每个分支仔细定制,ResNet可以被认为是一个分枝网络,其中一个分支是身份映射。
!](https://img-blog.csdnimg.cn/20210703160543328.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0xvdmVLS2FybGllXw==,size_16,color_FFFFFF,t_70)

全连接层: ∑ i = 1 D w i s i \sum^D_{i=1}w_is_i i=1Dwisi
在这里插入图片描述
Split:将数据 x \bf x x split成D个特征;
Transform:每个特征经过一个线性变换;
Merge:通过单位加合成最后的输出。
汇总转换: F ( x ) = ∑ i = 1 C T i ( x ) \mathcal F(x)=\sum^C_{i=1}\mathcal T_i(x) F(x)=i=1CTi(x)

Inception是一个非常明显的“split-transform-merge”结构,作者认为Inception不同分支的不同拓扑结构的特征有非常刻意的人工雕琢的痕迹,而往往调整Inception的内部结构对应着大量的超参数,这些超参数调整起来是非常困难的。

所以作者的思想是每个结构使用相同的拓扑结构,那么这时候的Inception(这里简称简化Inception)表示为 y = ∑ i = 1 C T i ( x ) {\bf y}=\sum^C_{i=1}\mathcal T_i(\bf x) y=i=1CT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值