ResNeXt 论文笔记

ResNeXt是针对ResNet的改进,通过引入cardinality(分组数)的概念,将原来的残差块改造成多个并行的路径。研究发现,增加cardinality比增加深度或宽度更能有效提高网络精度,同时保持较低的参数量。ResNeXt通过使用分组卷积,创建了一种简单的结构,即并行堆叠相同拓扑的块,从而在不显著增加参数量的情况下提升了ResNet的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Aggregated Residual Transformations for Deep Neural Networks

ResNeXt

论文链接: https://arxiv.org/abs/1611.05431

一、 Problem Statement

Inception模型提出了split-transform-merge的一个策略,但总体而言,如何使初始架构适应新的数据集/任务尚不清楚,特别是当有许多因素和超参数需要设计的时候。

二、 Direction

设计一个简单的结构,融合了VGG/ResNets的重复网络层的策略和Inception模型的split-transform-merge的策略。

三、 Method

先来看一下结构:

由上面的图片可以看出,对ResNet的residual layer进行了改造,变成了32个相同的path。这里提出了一个概念: cardinality。这个有区别于网络的深度,宽度。 作者发现,增加这个cardinality比增加网络的深度和宽度更加有效地提升网络的精度,且参数量没有很大的提升。比如,左边的原始ResNet网络,参数量为:
256 ⋅ 64 + 3 ⋅ 3 ⋅ 64 ⋅ 64 + 64 ⋅ 256 ≈ 70 K 256\cdot 64 + 3 \cdot 3 \cdot 64 \cdot 64 + 64 \cdot 256 \approx70K 25664+336464+6425670K
而改进后的ResNeXt参数量为:
C ⋅ ( 256 ⋅ d + 3 ⋅ 3 ⋅ d ⋅ d + d ⋅ 256 ) C \cdot (256 \cdot d + 3 \cdot 3 \cdot d \cdot d + d \cdot 256) C(256d+33dd+d256)
这里的 C C C就是cardinality, d d d是所对应的width。这里默认取 C = 32 , d = 4 C=32, d=4 C=32,d=4

与ResNet的对比如下:

四、 Conclusion

ResNeXt结构较为简单, 利用分组卷积,构建一种平行堆叠相同拓扑结构的block,提升了ResNet的精度的同时,不明显增加参数量。

Reference

### 关于 ResNeXt 的学术论文 ResNeXt 是一种改进的残差网络结构,在深度学习领域特别是计算机视觉方面取得了显著成果。这种架构通过引入基数(cardinality)作为额外维度来增强特征表示能力,从而进一步提升了模型的表现[^1]。 #### 架构特点 ResNeXt 的核心理念是在不增加计算复杂度的情况下提升表达力。具体来说: - **聚合残差变换**:相比于传统的单一路径或分支设计,ResNeXt 提出了多条并行转换路径的方式,每条路径共享相同的拓扑结构但参数不同; - **恒等映射与短路连接**:继承自 ResNet 的设计理念,允许更深层次的信息传递而不会造成梯度消失问题; ```python import keras.layers as layers def resnext_block(input_tensor, filters, cardinality=32): group_width = filters // cardinality x = layers.Conv2D(filters=filters, kernel_size=(1, 1))(input_tensor) grouped_convs = [] for _ in range(cardinality): y = layers.Conv2D(group_width, (3, 3), padding='same')(x) grouped_convs.append(y) z = layers.concatenate(grouped_convs) output = layers.Conv2D(filters * 2, (1, 1))(z) shortcut = input_tensor if output.shape[-1] == input_tensor.shape[-1] else \ layers.Conv2D(output.shape[-1], (1, 1))(input_tensor) return layers.add([output, shortcut]) ``` 上述代码展示了如何实现一个基本的 ResNeXt 块,其中包含了分组卷积的思想,这是 ResNeXt 特有的特性之一[^2]。 #### 性能优势 实验表明,在多个基准测试上,ResNeXt 显示出优于传统 CNN 和标准 ResNet 的效果。特别是在大规模数据集如 ImageNet 上,其准确性得到了明显提高。这得益于更好的特征提取能力和更强的学习潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值