几何专题

三角形划分区域

时间限制: 1 Sec 内存限制: 32 MB

题目描述
用N个三角形最多可以把平面分成几个区域?
输入
输入数据的第一行是一个正整数T(1<=T<=10000),表示测试数据的数量。然后是T组测试数据,每组测试数据只包含一个正整数N(1<=N<=10000)。
输出
对于每组测试数据,请输出题目中要求的结果。
样例输入
2
1
2
样例输出
2
8

#include <iostream>
using namespace std;
int main(int argc, char const *argv[])
{
    int m;
    cin >> m;
    int a[10011] = {0};
    a[1] = 2;
    for (int i = 2; i <= 10011; ++i)
    {
        a[i] = a[i-1] + 3*((i-1)*2);

    }
    while(m--){
        int n;
        cin >> n;
        cout << a[n] << endl;
    }
    return 0;
}

在披萨店里的思考

时间限制: 1 Sec 内存限制: 32 MB

题目描述
今天小明来到一家披萨店吃披萨,由于实在太饿了,他决定点一个超大的披萨。不过这家店很奇怪,制作的披萨都是矩形的。于是爱思考的小明想知道这个披萨能否完全放置于自己所在的圆桌之内,也就是披萨是否一定会有部分悬空于桌边之外。请你编程帮他解决。
输入
输入包含多组测试数据。每组输入数据一开始为一个整数r(1<=r<=1000),表示圆桌面的半径,当r=0时,输入结束。
随后输入两个整数w和l,分别表示披萨的宽和长。(1<=w<=l<=1000)
输出
对于每组输入,输出披萨是否可以完全放在圆桌内。具体输出格式见所给的输出样例
如果一个披萨刚刚与桌边相碰,那么属于可以完全放在圆桌内的。
样例输入
38 40 60
35 20 70
50 60 80
0
样例输出
Pizza 1 fits on the table.
Pizza 2 does not fit on the table.
Pizza 3 fits on the table.

#include <stdio.h>
#include <math.h>

int main(int argc,char* argv[])
{
    int r, i  = 0;
    int w, l;
    while(scanf("%d", &r) != EOF&&r){
        scanf("%d%d", &w, &l);
        i++;
        if(sqrt(w*w*1.0+l*l*1.0)/2 <= r){
            printf("Pizza %d fits on the table.\n", i);
        }else {
            printf("Pizza %d does not fit on the table.\n", i);
        }
    } 
    return 0;
}

重心在哪里

时间限制: 1 Sec 内存限制: 32 MB

题目描述
每个人都知道牛顿发现万有引力的故事。自从牛顿发现万有引力后,人们用万有引力理论解决了非常多的问题。不仅如此,我们也知道了每个物体都有自己的重心。
现在,给你三角形三个顶点的坐标,你能计算出三角形的重心吗?
输入
题目包含多组测试数据。第一行输入一个正整数n,表示测试数据的个数,当n=0时,输入结束。
接下来n行,每行包含6个数字x1,y1,x2,y2,x3,y3,表示三角形三个顶点的坐标。
输出
对于每组输入,输出重心的坐标,结果保留1位小数。
样例输入
2
1.0 2.0 3.0 4.0 5.0 2.0
1.0 1.0 4.0 1.0 1.0 5.0
0
样例输出
3.0 2.7
2.0 2.3

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc,char* argv[])
{
    int n;
    scanf("%d", &n);
    while(n--){
        double x1 = 0, y1 = 0, x= 0, y = 0;
        int i;
        for(i = 1;i <= 3;i++){
            scanf("%lf%lf", &x1, &y1);
            x += x1;
            y += y1;
        }
        printf("%.1lf %.1lf\n", x/3, y/3);
        if(n == 0){
            scanf("%d", &n);
        }
    }
    return 0;
}

矩形问题

时间限制: 1 Sec 内存限制: 32 MB

题目描述
现给你若干矩形,矩形的边都平行于x轴和y轴,请你编程计算被其他矩形包含在内部的矩形的个数(如果内部的矩形的边与外部的矩形的边重合,也算作正确的结果)。
输入
输入包含多组测试数据。每组输入第一行是一个整数n(n<=100),表示矩形个数。
接下来n行,每行输入四个实数,分别表示矩形的最小x坐标、最大x坐标、最小y坐标、最大y坐标。
输出
对于每组输入,输出被其他矩形包含在内部的矩形的个数。
样例输入
3
100 101 100 101
0 3 0 101
20 40 10 400
4
10 20 10 20
10 20 10 20
10 20 10 20
10 20 10 20
样例输出
0
4

#include <iostream>
using namespace std;
typedef struct A {
    double x, y;
    double x1, y1;
} aa;
int main(int argc, char const *argv[]) {
    int m;
    while (cin >> m) {
        aa a[m];
        int ans = 0;
        for (int i = 0; i < m; i++)
            cin >> a[i].x >> a[i].x1 >> a[i].y >> a[i].y1;
        for (int i = 0; i < m; i++)
            for (int j = 0; j < m; j++) {
                if (i == j)
                    continue;
                else if (a[j].x <= a[i].x && a[j].y <= a[i].y && a[j].x1 >= a[i].x1 && a[j].y1 >= a[i].y1) {
                    ans++;
                    break;
                }
            }
        cout << ans << endl;
    }
    return 0;
}

计算面积

时间限制: 1 Sec 内存限制: 32 MB
重点内容
题目描述
小明家刚买了一块地,但是他不知道这块地的面积,因为这块地是由一条抛物线和一条直线围成的。下面的图片展示了这块地的形状。
现在给你抛物线的顶点坐标和抛物线与直线的交点坐标,请你计算这块地的面积。
输入
输入的第一行是一个整数t,表示有t组测试数据。
每组输入包含三行,第一行输入P1点的坐标,第二行输入P2点的坐标,第三行输入P3点的坐标。
每个点的坐标由两个浮点数x和y构成。(0.0<=x,y<=1000.0)
题目保证输入中不会出现两点和三点重合的情况。
输出
对于每组输入,请输出这块地的面积,结果保留两位小数。
样例输入
2
5.000000 5.000000
0.000000 0.000000
10.000000 0.000000
10.000000 10.000000
1.000000 1.000000
14.000000 8.222222
样例输出
33.33
40.69

#include <stdio.h>
#include <math.h>
#include <string.h>

int main(int argc,char* argv[])
{
    float x1, y1, x2, y2, x3, y3;
    double k, b, s1, s2, a, s3, s4;
    int n;
    scanf("%d", &n);
    while(n--)
    {
        scanf("%f%f%f%f%f%f", &x1, &y1, &x2, &y2, &x3, &y3);
        k = (y3-y2)/(x3-x2);
        if(x3 == x2) k=0;
        b = y2-(y2-y3)/(x2-x3)*x2;
        a = (y2-y1)/(x1-x2)/(x1-x2);
        s1 = (a*(x3-x1)*(x3-x1)*(x3-x1))/3+y1*x3-(a*(x2-x1)*(x2-x1)*(x2-x1))/3-y1*x2;
        s3 = a*((x3-x1)*(x3-x1)*(x3-x1)/3)+y1*(x3-x1)-(a*((x2-x1)*(x2-x1)*(2-x1)/3)+y1*(x2-x1));
        s2 = (k*x3*x3)/2+b*x3-(k*x2*x2)/2-b*x2;
        s4 = (k*(x3-x2)*(x3-x2))/2+y2*(x3-x2);
        printf("%.2lf\n", s1-s2);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值