TSP问题的三种解法-hillclimbing,simulated_annealing and genetic algorithmg

TSP-Travelling Salesman Problem

首先是hillclimbing算法,这是一种local optimal的算法,非常容易陷入局部最优。我的方法是:现有一个初始城市序列,然后随机选取两个城市进行交换,重新计算距离,如果所得结果较原有的结果更优,则采取新的序列,否则舍弃。


Simulated_annealing算法,同样是一种local optimal算法,但是较hillclimbing算法有所改进。我的方法是:现有一个初始城市序列,然后随机选取两个城市进行交换,重新计算距离,如果所得结果较原有的结果更优,则采取新的序列,否则有一定的概率接受该序列。接受的概率P=exp((new_distance-optimal_distance)/current_temperature)。P会随着current_temperature的下降而越来越小。通过P的设置,使得算法在执行前期有很大概率跳出局部最优解。


genetic algorithm算法,待更新.

阅读更多
文章标签: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭