模板题——前缀和与差分

1.前缀和【一维】

#include <bits/stdc++.h>

using namespace std;
const int N=100005;
int a[N],s[N];
int main()
{
    s[0]=0;
    int n,m,l,r;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=n;i++) s[i]=a[i]+s[i-1];
    while(m--)
    {
        scanf("%d%d",&l,&r);
        printf("%d\n",s[r]-s[l-1]);
    }
    return 0;
}

1230.k倍区间【太难了,想了俩小时,好多需要注意的细节】

#include <bits/stdc++.h>

using namespace std;
const int N=1e5+10;
typedef long long ll;
int n,k;
int a[N];
ll s[N],cnt[N];
int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        s[i]=s[i-1]+a[i];
    }
    cnt[0]=1;//前缀和预处理余数
    ll res=0;
    for(int i=1;i<=n;i++)
    {
       res+=cnt[s[i]%k];
       cnt[s[i]%k]++;
    }
    printf("%lld\n",res);
    return 0;
}

2.子矩阵的和【二维前缀和】

方法一:二维前缀和

#include <bits/stdc++.h>

using namespace std;
const int N=1010;
int a[N][N],s[N][N];
int main()
{
    int n,m,q;
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1; i<=n; i++)
    {
        s[i][0]=0;
        for(int j=1; j<=m; j++)
        {
            scanf("%d",&a[i][j]);
            s[i][j]=a[i][j]+s[i][j-1];
        }
    }
    int x1,x2,y1,y2;
    while(q--)
    {
        int sum=0;
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        for(int i=x1; i<=x2; i++)
        {
            sum+=s[i][y2]-s[i][y1-1];
        }
        printf("%d\n",sum);
    }
    return 0;
}

方法二:容斥原理

#include <bits/stdc++.h>

using namespace std;
const int N = 1010;
int m,n,q;
int a[N][N],b[N][N];
int main(){
    cin>>n>>m>>q;
    for(int i = 1; i <= n; i ++)
    for(int j = 1; j <= m; j ++ )
    cin>>a[i][j];
    for(int i = 1; i <= n; i ++)
    for(int j = 1; j <= m; j ++)
    b[i][j]=b[i-1][j]+b[i][j-1]-b[i-1][j-1]+a[i][j]; 
    while(q--)
    {
      int x1,y1,x2,y2;
      cin>>x1>>y1>>x2>>y2;
     printf("%d\n",b[x2][y2]-b[x1-1][y2]-b[x2][y1-1]+b[x1-1][y1-1]);
    }
    return 0;
    
}

激光炸弹【二维前缀和的经典应用】,细节很要命,开始都没看明白题意\冷汗

#include <bits/stdc++.h>

using namespace std;
const int N=5010;
int n,m;
int s[N][N];
int main()
{
    int cnt,R;
    cin>>cnt>>R;
    n=m=R;
    while(cnt--)
    {
        int x,y,w;
        cin>>x>>y>>w;
        x++,y++;//前缀和下标从1开始
        n=max(n,x),m=max(m,y);//n,m表示区域边界
        s[x][y]+=w;
    }
    for(int i=1;i<=n;i++)//预处理前缀和
        for(int j=1;j<=m;j++)
        s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
    int res=0;
    //枚举所有边长是R的矩形,(i,j)为右下角
    for(int i=R;i<=n;i++)
        for(int j=R;j<=m;j++)
        res=max(res,s[i][j]-s[i-R][j]-s[i][j-R]+s[i-R][j-R]);
    cout<<res<<endl;
    return 0;
}

523.组合数问题,很巧妙的构造了一个01矩阵,转化成二维前缀和

#include <bits/stdc++.h>

using namespace std;
const int N=2010;
int c[N][N];
int s[N][N];
int main()
{
    int T,k;
    cin>>T>>k;
    for(int i=0;i<N;i++)
    {
        for(int j=0;j<=i;j++)
        {
            if(!j) c[i][j]=1%k;
            else c[i][j]=(c[i-1][j]+c[i-1][j-1])%k;
        }
    }
    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
    {
        if(j<=i&&c[i][j]==0) s[i][j]=1;
        if(i-1>=0) s[i][j]+=s[i-1][j];
        if(j-1>=0) s[i][j]+=s[i][j-1];
        if(i-1>=0&&j-1>=0) s[i][j]-=s[i-1][j-1];
    }
    while(T--)
    {
        int n,m;
        cin>>n>>m;
        cout<<s[n][m]<<endl;
    }
    return 0;
}

3.差分【一维差分】

#include <bits/stdc++.h>

using namespace std;
const int N=100010;
int a[N],b[N];
void insertt(int l,int r,int c)
{
    b[l]+=c;
    b[r+1]-=c;
}
int main()
{
    int m,n;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=n;i++) insertt(i,i,a[i]);
    int l,r,c;
    while(m--)
    {
        scanf("%d%d%d",&l,&r,&c);
        insertt(l,r,c);
    }
    for(int i=1;i<=n;i++) b[i]+=b[i-1];
    for(int i=1;i<=n;i++) printf("%d ",b[i]);
    return 0;
}

4.差分矩阵【二维差分】

方法一:容斥原理

#include <bits/stdc++.h>

using namespace std;
const int N=1010;
int a[N][N],b[N][N];
void inserrtt(int x1,int y1,int x2, int y2, int c)
{
    b[x1][y1]+=c;
    b[x2+1][y1]-=c;
    b[x1][y2+1]-=c;
    b[x2+1][y2+1]+=c;
}
int main()
{
    int n,m,q;
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
            inserrtt(i,j,i,j,a[i][j]);
        }
    }
    while(q--)
    {
        int x1,x2,y1,y2,c;
        scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
        inserrtt(x1,y1,x2,y2,c);
    }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            b[i][j]+=b[i][j-1]+b[i-1][j]-b[i-1][j-1];
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
        j==m?printf("%d\n",b[i][j]):printf("%d ",b[i][j]);

    return 0;
}

方法二:二维差分

#include <bits/stdc++.h>

using namespace std;
const int N=1010;
int a[N][N],b[N][N];
void inserrtt(int x1,int y1,int x2, int y2, int c)
{
    for(int i=x1;i<=x2;i++)
    {
        b[i][y1]+=c;
        b[i][y2+1]-=c;
    }
}
int main()
{
    int n,m,q;
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
            inserrtt(i,j,i,j,a[i][j]);
        }
    }
    while(q--)
    {
        int x1,x2,y1,y2,c;
        scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
        inserrtt(x1,y1,x2,y2,c);
    }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            b[i][j]+=b[i][j-1];
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
        j==m?printf("%d\n",b[i][j]):printf("%d ",b[i][j]);

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值